
Large Language Models for Test-Free Fault Localization
Aidan Z.H. Yang
aidan@cmu.edu

Carnegie Mellon University
Pittsburgh, United States

Claire Le Goues
clegoues@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, United States

Ruben Martins
rubenm@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, United States

Vincent J. Hellendoorn
vhellendoorn@cmu.edu

Carnegie Mellon University
Pittsburgh, United States

ABSTRACT
Fault Localization (FL) aims to automatically localize buggy lines
of code, a key first step in many manual and automatic debugging
tasks. Previous FL techniques assume the provision of input tests,
and often require extensive program analysis, program instrumen-
tation, or data preprocessing. Prior work on deep learning for APR
struggles to learn from small datasets and produces limited results
on real-world programs. Inspired by the ability of large language
models (LLMs) of code to adapt to new tasks based on very few
examples, we investigate the applicability of LLMs to line level
fault localization. Specifically, we propose to overcome the left-to-
right nature of LLMs by fine-tuning a small set of bidirectional
adapter layers on top of the representations learned by LLMs to
produce LLMAO, the first language model based fault localization
approach that locates buggy lines of code without any test coverage
information. We fine-tune LLMs with 350 million, 6 billion, and 16
billion parameters on small, manually curated corpora of buggy
programs such as the Defects4J corpus. We observe that our tech-
nique achieves substantially more confidence in fault localization
when built on the larger models, with bug localization performance
scaling consistently with the LLM size. Our empirical evaluation
shows that LLMAO improves the Top-1 results over the state-of-
the-art machine learning fault localization (MLFL) baselines by
2.3%-54.4%, and Top-5 results by 14.4%-35.6%. LLMAO is also the
first FL technique trained using a language model architecture that
can detect security vulnerabilities down to the code line level.

CCS CONCEPTS
• Software and its engineering → Software functional prop-
erties; • Computing methodologies→ Neural networks.

ACM Reference Format:
Aidan Z.H. Yang, Claire Le Goues, Ruben Martins, and Vincent J. Hellen-
doorn. 2024. Large Language Models for Test-Free Fault Localization. In
2024 IEEE/ACM 46th International Conference on Software Engineering (ICSE
’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3597503.3623342

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3623342

1 INTRODUCTION
Fault localization (FL) [1–4] approaches aim to automatically iden-
tify which program entities (like a line, statement, module, or file)
are implicated in a particular bug. The goal is to assist programmers
in fixing defects by pinpointing the places in the code base that
should be modified to fix them.

Broadly speaking, existing FL techniques combine or leverage
static and dynamic program analysis information to compute a
score corresponding to a program entity’s probability of contribut-
ing to a particular bug. Spectrum based fault localization (SBFL)
approaches, such as Tarantula [5] or Ochiai [6], apply statistical
analysis on the coverage data of failed/passed tests to compute the
suspiciousness of code elements. SBFL relies exclusively on test
coverage and is thus less applicable for data-driven defects; it is also
sensitive to properties of the underlying test suite like coverage
and numbers of passing and failing tests [1]. Mutation based fault
localization (MBFL) (like FIFL [7] or Metallaxis [8]) also analyzes
test case behavior to localize faults, but uses mutation analysis to
assess the concrete impact of particular code lines on test outcomes.
While effective, MBFL approaches are computationally intensive
and their performance is highly variable [9].

Recent advances in Machine learning based fault localization
(MLFL), like DeepFL [2], DEEPRL4FL [10], and GRACE [3]

use machine learning to relate code, test, or execution features
to the likelihood of faultiness for a program entity. MLFL tech-
niques learn to detect faulty lines of code from information in-
cluding suspiciousness scores from existing SBFL and MBFL tech-
niques (e.g., TRANSFERFL [11]), fault-proneness features like code
complexity metrics (e.g., DeepFL [2]), or the test coverage matrix
(DEEPRL4FL [10]), among others. These approaches speak to the
potential that increasingly powerful machine learning models have
for supporting debugging tasks.

Indeed, Deep learning (DL) has shown promise for many code
related tasks, such as program synthesis [12, 13]. The most effective
DL models for both natural language and code related tasks are
large language models (LLMs), such as Codex [14] and GPT-4 [15].
This class of models trains many billions of parameters with even
more tokens of training data, which tends to yield highly flexible
and powerful text generators. LLMs’ utility for code generation
and the fact that they are trained on an abundance of publicly-
available code [14] both suggest that existing large-scale LLMs
capture program source code in ways that can be leveraged for
specialized development tasks. A key property of LLMs is that

https://doi.org/10.1145/3597503.3623342
https://doi.org/10.1145/3597503.3623342

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Aidan Z.H. Yang, Claire Le Goues, Ruben Martins, and Vincent J. Hellendoorn

their performance improves consistently with the scale of their
computational budget [16], which is itself a function of the model
and training data size.

For instance, LLM performance on program synthesis bench-
marks increases linearly with the magnitude (log scale) of the num-
ber of parameters in the model [17]. This suggests that there is
substantial performance to be unlocked for software engineering
tasks by leveraging the largest publicly available language models.
However, most existing work in this space to date either trains
small models from scratch [2, 10, 18], or fine-tunes modest-sized
models [11], missing out on the scale of state-of-the-art LLMs.

This is in part because LLMs are not immediately suited off-the-
shelf for coding tasks that do not involve code generation, like
fault localization. State-of-the-art LLMs for code [13, 14, 19, 20] are
trained to generate code in a left-to-right manner, with each token
predicted from its preceding context. We posit that models trained
in this way are less suitable for token-level discriminative tasks,
like line-level fault localization, because the representation for any
given token is only conditioned on the context to the left.

In this paper, we present a promising alternative: we train light-
weight bidirectional adapters, themselves small models of the same
architecture as the base LLM, on top of left-to-right language mod-
els. These adapters add relatively few parameters and can be trained
effectively on small datasets of real bugs, such as Defects4J [21],
without updating the underlying LLM. We demonstrate that the
representations learned by pretrained left-to-right language models
already contain a wealth of knowledge about the suspiciousness of
lines of code, which increases strongly with the size of the LLM. We
can leverage this power through our adapters to find bugs while
requiring just a few hundred training samples for pretraining. Our
approach yields better fault localization performance than prior
work while requiring significantly less data preprocessing overhead.
Importantly, our approach does not use test cases at all, and there-
fore does not depend on test code quality for its performance. Our
approach does not need to run or analyze the test cases or examine
the program behavior on test cases to perform localization. Because
the approach is lightweight, it can effectively fine-tune existing
LLMs for particular languages (we show applicability to C, Java,
and Python), or particular defect classes (we show applicability to
functional defects and security vulnerabilities), with a relatively
small amount of training data.

In summary, we make the following contributions.

• LLMAO. We propose a technique that uses different config-
urations of language models to predict faulty lines across
three languages and two different application domains.

• Novel large language model based learning for FL. We
showed that with fine-tuning on top of off-the-shelf large
language models, we can achieve a higher fault detection
rate than previous MLFL techniques without the use of test
cases.

• DL based security vulnerability detection. LLMAO is the
first MLFL technique that can detect code line level vulnera-
bilities in the security domain.

• Empirical evaluation. We evaluated LLMAO against recent
state-of-the-art FL models to show its effectiveness in fault
localization.

1 public StrBuilder appendFixedWidthPadRight(Object, int, char) {

2 ...

3 if (width > 0) {

4 ensureCapacity(size + width); // SBFL=0.35

5 String str = (obj == null ? getNullText()

6 : obj.toString()); //SBFL=0.35

7 int strLen = str.length(); //SBFL=0.35

8 ...

9 public StrBuilder appendFixedWidthPadLeft(Object, int, char) {

10 // relevant code identical to the above

11 ...

12 public String getNullText(){

13 return nullText; // SBFL=0.71

14 }

(a) Code snippet implicated in Apache Commons Lang bug #47
from Defects4J . Both methods throw a NullPointerException when
getNullText() also returns null (line 7). The developer addressed
this by adding null checks after the assignment to str (not shown).
Select lines are annotated with Ochiai [6] suspiciousness score.

1 public void testLang412Right() {

2 StrBuilder sb = new StrBuilder();

3 sb.appendFixedWidthPadRight(null, 10, '*');

4 assertEquals("Failed to invoke appendFixedWidthPadRight",

5 "**********", sb.toString());

6 } //Test fails due to NullPointerException in appendFixedWidthPadRight()

7 public void testLang412Left() {

8 StrBuilder sb = new StrBuilder();

9 sb.appendFixedWidthPadLeft(null, 10, '*');

10 assertEquals("Failed to invoke appendFixedWidthPadLeft",

11 "**********", sb.toString());

12 } //Test fails due to NullPointerException in appendFixedWidthPadLeft()

(b) Lang’s bug #47 and corresponding failed tests

Figure 1: Apache Commons Lang Bug #47, from Defects4J

• Artifact availability. Our data, tool, and model checkpoints
are available.1

2 MOTIVATION
In this section, we discuss in detail two real-world bugs that test-
based FL techniques struggle to clearly localize. We use these ex-
amples to motivate why we propose a novel language model based
fault localization technique that shifts the dependence on tests to
an LLM’s latent understanding of source code.

2.1 General Logic Defects
Consider Figure 1a, which shows snippets of code from twomethods
in the Apache Commons Lang project. Lang-47 (i.e., bug #47 of the
Lang project) from the Defects4J (V1.2.0) [21] dataset highlights
a null pointer exception that can be triggered in both of these
methods, for the same reason. The issue was addressed by adding
the null pointer check and initialization shown starting on line 7 in
appendFixedWidthPadRight; the identical code and block added
in appendFixedWidthPadLeft is elided for brevity.

1https://github.com/squaresLab/LLMAO

https://github.com/squaresLab/LLMAO

Large Language Models for Test-Free Fault Localization ICSE '24, April 14�20, 2024, Lisbon, Portugal

Given tests, we can use the Ochiai SBFL formula [6] to calculate
code line suspiciousness scores to help pinpoint this bug. SBFL tech-
niques in general compute suspiciousness by applying a formula to
each entity (line, in this case) in the codebase based on test coverage
information for passing and failing tests. Speci�cally, Ochiai counts
for each code line¹� º the number of failed tests covering� ¹�5º or
not covering� ¹=5º, and the number of passed tests covering� ¹�?º
or not covering� ¹=?º. The suspiciousness score of a code line¹� º

is then$2�808¹� º = �5 ¹�5 ¸ �?º ¹ � 1
2 º ¹�5 ¸ =5º ¹ � 1

2 º .
Several tests in the Apache Commons Lang test suite execute this

code. The two that throw null pointer exceptions, demonstrating
the bug, are shown in Figure 1b. Five others (not shown) execute
these two methods as well, but are passing.

Figure 1a shows Ochiai scores computed using these tests. The
scores demonstrate a common limitation of SBFL, which is that it
cannot disambiguate between lines in a single straight-line block,
as shown inappendFixedWidthPadRight. testLang412Right()
executes lines 1�7, corresponding to thethen block of the check
on line 3. This computation is also misled by the small number of
triggering tests: both failing tests covergetNullText , while only
two of the �ve passing tests do. Line 13 in Figure 1a has a much
higher score than the code in the two methods that call it.2

MLFL techniques like DeepFL [2] use other features on top of
SBFL suspiciousness scores for training data, like textual similarity
information, to guide their model to detect faulty methods. However,
DeepFL only has con�dence in method-level fault localization, with
limited results at the statement level.

Our technique can detect line 7 from Figure 1a as highly suspi-
cious. It assigned a score of 0.33 on line 7, and ranks it the fourth
most suspicious line in the code �le. Our technique also assigned a
score of 0.27 on line 1, and ranks it the seventh most suspicious line
in the code �le. In contrast, our technique only assigned a score of
0.09 for line 13, which is not within the top 20. Language models are
good at detecting these types of defects because they recognize un-
likely inputs [22]. Consider just the text of the code, line 5 appears
to assign anull -like value (the result ofgetNullText()) to src
under some conditions. Line 7 then invokes a method onsrc . Even
without knowing the implementation ofgetNullText() in depth
(for which traditional program analyzers would be more suitable
than language models), this pattern is suspicious to a human reader
and a large language model alike.

2.2 Vulnerability Detection
Logical errors are not the only type of code mistakes that can
impact software quality. Software security vulnerabilities are often
the target of various forms of cyber-attacks.

TheDevigndataset [23] labels vulnerable functions from four
open-source C-language repositories (requiring 600 man hours
of manual labeling). Figure 2 shows a bug from the Qemu open-
source project,3 one of the four studied repositories inDevign. The
bug lines (highlighted) correspond to CWE-362, within the top
25 most dangerous Common Weakness Enumeration (CWE) list.4

2Note that the test suite includes another test,testGetSetNullText , which explicitly
checks thatgetNullText returnsnull (not the empty string).
3https://qemu.org/
4https://cwe.mitre.org//top25/archive/2022/2022_cwe_top25.html

1 DISAS_INSN(divw)
2 {
3 TCGv reg;
4 TCGv tmp;
5 TCGv src;
6 int sign;
7 sign = (insn & 0x100) != 0;
8 reg = DREG(insn, 9);
9 if (sign) {

10 tcg_gen_ext16s_i32(QREG_DIV1, reg);
11 } else {
12 tcg_gen_ext16u_i32(QREG_DIV1, reg);
13 }
14 SRC_EA(env, src, OS_WORD, sign, NULL);
15 tcg_gen_mov_i32(QREG_DIV2, src);
16 if (sign) {
17 gen_helper_divs(cpu_env, tcg_const_i32(1));
18 } else {
19 gen_helper_divu(cpu_env, tcg_const_i32(1));
20 }
21 tmp = tcg_temp_new();
22 src = tcg_temp_new();
23 tcg_gen_ext16u_i32(tmp, QREG_DIV1);

24 tcg_gen_shli_i32(src, QREG_DIV2, 16);

25 tcg_gen_or_i32(reg, tmp, src);
26 set_cc_op(s, CC_OP_FLAGS);
27 }

Figure 2: Qemu's CWE-362 (Race condition vulnerability)

CWE describes CWE-362 as concurrent execution using shared
resource with improper synchronization (i.e., race condition). Al-
though Qemu's repository5 includes test cases for crashes and input
behaviors, none of the test cases covers concurrency bugs that only
occur during run time. Indeed, concurrency bugs like race condi-
tions are ill-suited for discovery via traditional testing.

As a result, test based fault localization and debugging methods
are clearly inapplicable to this kind of defect. This has of course
motivated signi�cant work in pro�ling and analysis to discover and
address them [23, 24]. Chakraborty et al. [24] found that existing
modeling techniques do not completely capture code semantics in
vulnerability detection. Existing deep learning based vulnerability
detection tools only go as far as predicting any vulnerability in
a code snippet or program �le, rather than individual statements.
Traditional approaches such as static analysis can be used to detect
race conditions [25?]. However, these approaches are either precise
but not scalable or can scale for large programs but incur a high
false positive rate, limiting their usage in practice.

Fortunately, a dataset likeDevignencompasses signi�cant man-
ual e�ort in labeling existing security vulnerabilities in existing
code, as has been done for lines 10, 12, and 23�25 in Figure 2.

We show in this paper that an FL-speci�c model pretrained on
a large-scale LLM can also detect security vulnerabilities without
test cases.

Our technique detects lines 3, 4, 10, 12, and 23 as faulty in Figure
2, in which lines 10, 12, and 23-25 are actual vulnerability lines. Our
technique successfully localizes three of the �ve lines that are faulty.

5https://github.com/qemu/qemu

ICSE '24, April 14�20, 2024, Lisbon, Portugal Aidan Z.H. Yang, Claire Le Goues, Ruben Martins, and Vincent J. Hellendoorn

Surprisingly, lines 3 and 4 are variable declarations (i.e., variables
reg andtmp) for the actual faulty lines 10�12, and 23�25.

3 APPROACH
In this section, we discuss the key ideas behind our language model
enabled fault localization technique. Figure 3 shows an overview of
LLMAO's training setup. The input toLLMAOis a buggy program;
its output is a list ofsuspiciousnessscores corresponding to each
code line's probability of being buggy � values close to 1 indicate
that lines are likely defective. As shown in Figure 3, we �rst tokenize
the input and then provide it to a pretrained left-to-right LLM. From
this LLM, we obtain one (high-dimensional)vector representation
per line, which we provide to a small bidirectional model that
predicts bugginess probabilities for each line. We only train the
�nal stage of this model; the LLM remains frozen and can be easily
replaced with other powerful open-source models. Figure 5 shows
a more detailed description of our language modeling procedure,
which we describe in detail in Section 3.2. In the following sections,
we describe each component ofLLMAO.

3.1 Left-to-right Language Models
Neural Language Models typically produce text in a left-to-right
manner, producing each word given its pre�x context. This both
enables e�cient training, as any document can be turned into a
collection of as many training samples as there are tokens, and en-
ables them to generate new text once trained. Virtually all modern
language models are attention-based models that use the Trans-
former architecture [26]. In these models, each token exchanges
information with all other tokens via a learned attention proce-
dure. To e�ciently train left-to-right Transformer models on an
entire document in which each token is generated only from its
pre�x context thus involves �masking out� part of the attention
matrix to prevent each token from attending to its su�x context
(essentially, the future). Figure 5 (top) shows the causal attention
mechanism used to train a left-to-right language model. Figure 5
describes a simpli�ed Transformer model for bothCodeGenand
our bidirectional language model. Auto-regressive and left-to-right
LMs [13, 14, 19, 20] use all previous tokens (i.e., tokens to the left)
to predict the probability of the next token (i.e., tokens to the right).
Left-to-right models are useful for program generation tasks, as
shown in Figure 4. Speci�cally, the lower triangular part of the
attention matrix remains unmasked (visualized as blue) while atten-
tion in the remaining part is masked out (white). This con�guration
allows each token to attend to itself and all past tokens, but prevents
it from attending to future tokens.

Our approach is compatible with any left-to-right language
model, but is most e�ective when the underlying model is large
and has been pretrained on a large volume of code data. At present,
the CodeGenfamily of models [13] is most suitable for this role.
These are a series of increasingly large left-to-right language models
trained for program synthesis in three stages:

(1) Each model is �rst trained on the natural language dataset
ThePile, an 825.18 GiB mostly English language text corpus
collected by Gao et al. [27] for language modeling. 7.6% of
the dataset is programming language data collected from
GitHub repositories with >100 stars.

(2) The models are then further trained on data from the Google
BigQuery GHArchive dataset, which consists of open-source
code across multiple programming languages � C, C++, Go,
Java, JavaScript, and Python.

(3) Finally, the models are tuned on the BIGPYTHON dataset,
which contains a large amount of Python data.

Checkpoints after each stage are released for every model size,
ranging from 350M to 16B parameters. The 16B model outperforms
the original Codex model [14] on a Python program synthesis task.

While language models are typically used to predict the next
token, they can also return the �hidden� states from their �nal
Transformer layer. When generating text, these states are converted
to a next-token prediction via a simple linear transformation. As
such, these states tend to represent the model's knowledge about the
evolving context at each point in the �le, making them intrinsically
useful. As shown in Figure 5, we extract the �nal hidden states for
each newline (NL) token in each training sample from CodeGen
to produce a condensed sequence representation in which each
token represents one line. We pair these with their corresponding
location (i.e., line #5 of a 50 line �le) and save these to disk.

To train our model, we load these encoded lines in batches, where
we retrieve samples of up to 128 contiguous newline states at a time.
We choose this number because theCodeGenmodel can consume
a maximum of 2,048 tokens as its input size; inputs with 128 lines
almost always �t this token budget. Samples with fewer lines are
padded, along with the label vector, to obtain a uniform length.
Padding entries are ignored in the loss computation. When �les
contain more than 128 lines, we sample a series of 128 line windows
that cover each faulty line in the �le. Speci�cally, we repeatedly
create a sample with up to 128 lines starting from a random o�set
before the immediate next faulty lines that is not yet covered by a
previous segment. We then mark all faulty lines in this segment as
covered and repeat until all lines are covered by at least one segment.
We choose random starting o�sets to ensure that the faulty lines
within the split code lines are not consistently at the same indices
(e.g., right at the start or in the middle), which would cause our
model to memorize certain index locations as faulty lines. This
enables our technique to handle inputs longer than 2048 tokens.

3.2 Bidirectional Adapter
While left-to-right language models extract rich representations per
token, they are ill-suited for fault prediction because the represen-
tation of each given token only re�ects knowledge of its left-ward
context. One solution might predict buggy lines based on the �nal
hidden state, re�ecting the model's knowledge after the entire �le
has been processed, but this creates a bottleneck where that state
must store information from each line in the entire �le. This bottle-
necking phenomenon [28] is precisely why the NLP �eld moved
away from Recurrent Neural Networks, which represent sequences
with a single hidden state, and towards attention-based models,
which preserve and use the state of each token [26].

We postulate that we can leverage these rich learned represen-
tations at each token by training just a few more Transformer
layers that allow the model to exchange information between rep-
resentations of later and earlier lines, thereby generating a new,
bidirectionally aware representation for each line of code. We can

Large Language Models for Test-Free Fault Localization ICSE '24, April 14�20, 2024, Lisbon, Portugal

Figure 3: LLMAO 's architecture, which takes as input a buggy program and produces a list of suspiciousness scores for each code line

1 # Recursive binary search
2 def binarySearch(list, left, right, i):
3 middle = ???

(a) Left-to-right language model prompt

1 # Recursive binary search
2 def binarySearch(list, left, right, i):
3 middle = (left + right) // 2

4 if arr[middle] == x:

5 return middle

(b) Left to right language model completion

Figure 4: Left-to-right language model code generation

do so by removing the causal attention mask that normally prevents
the exchange of information with �future� tokens in our added lay-
ers. In our case, we assume that the entire �le has already been
written, so this constraint is unnecessary. This yields abidirectional
encoder. As shown in Figure 5, the attention masking matrix for the
bidirectional model allows all tokens in the sequence to attend to
each other (visualized in blue). We thus train a bidirectional adapter
consisting of a con�gurable number of Transformer layers, follow-
ing the standard Transformer encoder architecture [26]. Concretely,
our approach involves �ve steps, visualized in Figure 5:

Step 1:We start with a series of code tokens� = »20•21• ” ” ” •2# ¼.
We query a causally pretrained TransformerT%) to transform these
into a representational �states�(2 R# � � , where� represents the
pretrained model's dimensionality. This step takes place �o�ine�,
as we do not tune the pretrained model.

Step 2:We extract the representations of each newline token to
obtain state per line in the original program:(# ! 2 R" � � = (»28 =
\n¼, where" is the number of original newlines and typically" �
. We conjecture that these tokens' states reasonably accurately
capture the information of their line in the �le's pre�x context.

Step 3:The dimension of the pretrained model's states,� , ranges
up to 6,144 for the CodeGen models we built on. We use a signif-
icantly smaller dimension3 � � for our adapter layers, because
they are trained on limited data. We �rst reduce the dimension of
(# ! to ' # ! 2 R" � 3 = (# ! , 3 where, 3 2 R� � 3 is a learnable
weight, equivalent to a fully connected layer. We experiment with
dimensions3 2 f256•512•1024g

Step 4:We then train an=-layer bidirectional Transformer adapter
T� with the same internal dimension3. This gives us the �nal rep-
resentation of each newline token� # ! 2 R" � 3 , which aims to
capture their role in the bidirectional context. We set the number
of Transformer layers to= = 2.

Step 5:We transform each newline token's representation to
a single value ranging from 0 to 1 via a sigmoid-activated dense
projection� = f ¹' # ! , 1º where, 1 2 R3� 1. The resulting pre-
dictions per newline token can be seen as probability estimates
of each line being buggy according to the model. These are com-
pared against the ground-truth labels) 2 f 0•1g" using the binary
cross-entropy lossL �� =) ln � ¸ ¹ 1 �) º ln ¹1 � � º. This loss is
backpropagated through all layers up to, but not including, those in
the pretrained network to obtain gradients. Given these gradients
averaged across a su�ciently large minibatch of samples, the model
states are updated to make its predictions more likely to agree with
the training labels, using the setup described in Section 4.1.6.

4 EVALUATION
In this section, we present our approach and results for the follow-
ing three research questions.
RQ1. How doesLLMAO compare with prior FL techniques?
We evaluate our technique's performance in comparison with ex-
isting FL techniques on the same dataset.
RQ2. How well does LLMAO's performance generalize to
new projects? We evaluateLLMAO's performance on previously-
unseen code, to assess its generalizability beyond its training data.
RQ3. How does each component of LLMAO impact its perfor-
mance?We conduct an ablation analysis to evaluate the impact of
di�erent components on the performance of our model.

ICSE '24, April 14�20, 2024, Lisbon, Portugal Aidan Z.H. Yang, Claire Le Goues, Ruben Martins, and Vincent J. Hellendoorn

Figure 5: Attention masking procedure of LLMAO

RQ4. How generalizable is LLMAO to other languages and do-
mains? We evaluateLLMAOon di�erent languages and domains.

4.1 Setup
4.1.1 Dataset.Our work investigates the e�ectiveness of LLMs in
the setting of fault detection. To determine how well our proposed
technique can perform on real world faults, we select four datasets
with source code and corresponding labeled fault lines.

� Defects4JV1.2.0: A Java benchmark dataset with 395 bugs
from 6 Java projects [21]. We use V1.2.0 for most of our
benchmarks instead of the latest version (V2.0.0) to compare
on the same dataset as most prior FL techniques.

� Defects4JV2.0.0: A Java benchmark dataset with additional
bugs overDefects4JV1.2.0 [21]. To show that our approach
can generalize to faults from unseen projects, we further
evaluate our tool as trained onDefects4JV1.2.0 on 226 new
bugs from the newestDefects4Jversion (from projects total-
ing 165k more lines of code). We exclude the �rst 45 bugs in

Jsoup and all in Gson/Jacksoncore because of trouble repro-
ducing them (as seen in prior work [3]).

� BugsInPy: a Python benchmark with 493 bugs from 17 dif-
ferent projects [29].

� Devign: a C benchmark with 5,260 from two open-source
projects [23]. The original Devign dataset contains 15,512 se-
curity vulnerabilities from four di�erent projects [23]. How-
ever, the authors of Devign only released a partial dataset
available online.

All datasets include �xing commits that correspond to each fault. We
identify faulty statements as those that are changed in the git di� as-
sociated with each commit, following prior approaches [11, 22, 30].
We then track line numbers of changed statements as training labels.

4.1.2 Baselines.LLMAOtakes as input source code, and outputs a
ranked list of probabilities corresponding to how likely a code line
is buggy. To the best of our knowledge, no existing FL approaches
take as input only the source code as natural language. However,
we compare against existing FL approaches that take as input both
source code and test code to observe if an LLM-enabled FL technique
can produce comparable results without the dependence on tests
or test coverage information.

Our baselines are recent, state-of-the-art statement-level MLFL
approaches: DeepFL [2], DeepRL4FL [10], and TRANSFER-FL [11].
DeepFL, and DeepRL4FL are MLFL techniques that take the test
coverage information as model input. TRANSFER-FL builds on pre-
vious test-based MLFL approaches with pretrained information
from open-source Java programs. We also include Ochiai [6], the
best-performing SBFL approach. We use the prior techniques' repli-
cation packages to compute Top-N scores, including their handling
of tied ranks (if any); we follow DeepFL's approach for accounting
for tied ranks for Ochiai.

Our tool produces a fault probability score for each line of a code
�le (i.e., statement level fault localization). Previous approaches
output a ranked list of either suspicious statements or suspicious
methods. In particular, DeepFL [2] is trained at the method level,
i.e., predicting which methods are defective.

To compare, we follow other prior work and use DeepFL's spec-
trum and mutation-based features that are applicable to detect-
ing faulty statements. DeepRL4FL, and TRANSFER-FL perform
statement-level fault localization by default, similar toLLMAO.
Since the repository and processed dataset for DeepRL4FL are not
publicly available, we directly cite the experimental results reported
in their paper [10]. For each of the other compared techniques, we
run their tool for a total time of 30 minutes, which is comparable
to our tool's training time for 300 epochs.

4.1.3 Validation.For each of our three datasets, we perform a 10-
fold cross validation on the entire dataset. Speci�cally, we shu�e
the dataset and train 10 models with 90% of the training set each,
holding out the remaining 10% for validation, so that each sample
in the dataset is held out exactly once. This is by contrast with some
prior evaluations that in their default settings, validate tools within
individual projects (using one bug in a givenDefects4Jproject for
validation and training on other bugs in that same project) [2, 3,
10, 11]. An e�ective and robust FL tool using machine learning or

	Abstract
	1 Introduction
	2 Motivation
	2.1 General Logic Defects
	2.2 Vulnerability Detection

	3 Approach
	3.1 Left-to-right Language Models
	3.2 Bidirectional Adapter

	4 Evaluation
	4.1 Setup
	4.2 Results

	5 Related Work
	5.1 SBFL and MBFL
	5.2 MLFL
	5.3 LMs for Code

	6 Discussion and Threats
	7 Conclusions
	References

