Predicting Co-Changes between
Functionality Specifications and Source
Code in Behavior Driven Development

Aidan Yang Daniel A. da Costa Ying (Jenny) Zou

Queen’s University University of Otago Queen’s University

Behavior Driven Development (BDD) is a New
Style of Testing Strategy Based on Test Driven

Development

Traditional Testing Strategies

Test
suites

Source
code

Execute

tests

Fix
bugs

.Feature
Files

Behavior Driven Development

Step def.
files

. Combine

behaviors

| Construct Test

scenarios suites

- B

Example .Feature File

.Feature

fplayers

Feature: Trivialt Players and Teams

Scenario: Register as a new player

When you register "Tobias" with handle
"Athobe"

Then trivialt knows "@thobe" is "Tobias"

And "@thobe" should be the current player

Example Step Definition File

.Feature Step Definition

@players
@players / @Whﬁﬂ("hygu register \"([“\ll]*)\n with

handle \"(["\"]*)\"$")

Feature: Trivialt Players and Teans public void youRegisterUser (String name,
Scenario: Reglster as a new player String handle)
When you register "Tobias" with handle currentPlayer = ‘
"t hohe" trivialtWorld.register (handle, name);
assertThat (currentPlayer,
Then trivialt knows "€thobe" 1s "Tobias' is(not (nullvValue()))):

And "@thobe" should be the current player }
@Then (" “trivialt knows \"(["\"]*)\" is

\I‘I‘([""\'I'I]*)\"$"}

Step Definition File Linkage to Source Code

Step Definition Source Code

public Player register(String handle, String name)
@players {
@hen ("“you register \" (["\"]*)\" with Node node = playerMap.get(handle);

handle \"(["\"]*)\"S")

public void youRegisterUser (String name, Player player = null;

String handle) { if (node == null) {
currentPlayer =
trivialtWorld.register (handle, name); node = playerMap.put(handle, graphdb.createNode());
assertThat (currentPlayer, player = new Player(node);
is (not (nullValue())));
\ player.setName(name);
@Then (""trivialt knows \"(["\"]*)\" is player.setHandle(handle);

\I'l' A\'I'I *)\ll$"
((\")) | elee |

player = new Player(node);

Motivation

e Out-of-synch co-change
reduces benefits of BDD

* New developers
entering a project
struggle to understand
requirements

Motivation

@
[, e Out-of-synch co-change
reduces benefits of BDD

'3 BDD * New developers

entering a project
struggle to understand
requirements

a0 -
san dib

Identify code characteristics that can predict co-changes between
.feature files and source code files (BDD co-changes) to help
developers reduce out-of-sync BDD co-changes

We Selected 133 BDD Projects for Analysis O

AN
N pii;:i:s Eliminate Select
GitHub Open Selecft Java with R BDD. : prOJ.ects
R . projects commit with
epositories feature : :
. projects English logs
N~ files
1,005,247 59,933 927 890 133

Projects Projects Projects Projects Projects

8

Research Questions

* (RQ1): Can we accurately identify co-changes between .feature files
and source code files?

* (RQ2): Can we accurately predict when co-changes between .feature
files and source code files are necessary?

* (RQ3): What are the most significant characteristics for predicting
co-changes between .feature files and source code files?

Link .Feature Files and Source Code Using

Semantic Similarity

Characteristics of .Feature Files Characteristics of Source Code Files

public Player register(String handle, String name)

{ Method Name
Node node = playerMap.get(handle);

Eyer player = null,

Ap T s
Key r1v+alt Plazers :

Variable Name

oeererrro Reg1St T node = playermap.put(handle, graphdb.createNode());
When you register with handle player = new Player(node);
"th Verb player.setName(name);
Then trivrarcxmows "@thobe" 1s "Tobias" player.setHandle(handle);
And "@thobe" sho@ current player } ﬁ{
Proposition Player(node);

Java Terms

J

10

Our Analysis Obtained Over 60,000 Links Within

133 BDD Projects

.Feature Files

4

Nouns & Verbs

Source Code Files

4

D E— Nouns & Verbs

Cosine Similarity

NLP analysis obtained 60,203 links within the same
commit and 1,815 cross commit links.

11

We then Perform Manual Analysis to Check the
Accuracy of Our Approach

1,815 cross commit links. Too
many to check in detail

Confidence level of 95% and
confidence interval of 5%

4

Sample size of 451

12

Analysis of Links in the Sample

Sample size of 451.

4

360 co-changing work items
actually linked together.

80% agreement rate after
inspection by another author.

Our Approach
Yields
79% Accuracy

13

Episode 2: The RQs Strike Back

* (RQ1): Can we accurately identify co-changes between .feature files
and source code files?

* (RQ2): Can we accurately predict when co-changes between .feature
files and source code files are necessary?

* (RQ3): What are the most significant characteristics for predicting
co-changes between .feature files and source code files?

14

19 Characteristics for Prediction

e Source files added

Author Experience with BDD

Test files renamed

Other files deleted

Dependencies added (libraries imported)

e Source files renamed

15

We Approach Our Question as a Binary
Classification Problem

Source files added

Test files changed

Dependencies added

Source files renamed

Author Experience with
BDD

16

Our Top
Performing Model
Has 0.76 AUC

ROC Curve

 Random Forest (0.76)
* Naive Bayes (0.74)

* Logistic Regression

(0.70)

Area under the
random forest
ROC curve is AUC

False positive rate

17

Episode 3: Return of the RQs

* (RQ1): Can we accurately identify co-changes between .feature files
and source code files?

* (RQ2): Can we accurately predict when co-changes between .feature
files and source code files are necessary?

* (RQ3): What are the most significant characteristics for predicting
co-changes between .feature files and source code files?

18

Obtain an AUC Value after Eliminating an
Attribute

Souicefite-added
Test file added

Other file added ‘
Source file

modified

ap AUC

Decrease?

Test file modified

19

Test Files and All Other Files Changes Are the
Strongest Predictors

Test files added
Other files
modified

Test files re-

named

= = = ——
!

| testfiles added

1 otherfiles_mod

: testfiles renamed
otherloc_added
import_loc_del
import_loc_added
testloc_added
sourcefiles mod
methods_deleted
sourceloc_added
testloc_del

20

Co-changes Can Be Detected and Predicted!

RQ1: We can detect BDD co- RQ2: Our top classification
changes with 79% accuracy technique yields a 0.76 AUC

. RQ3: Test files added and
Q 73% renamed, and other files

v x modified are strongest
predictors

o
2]
-+
7
x
1)
=

pasduey) sa|i4 19410

pPappY 1531

21

Modify .Feature Files to Maximize BDD
Advantages When...

/’ Adding and |:|
renaming test files

Modifying all
other files D ‘ Modify .feature files!

Q Deleting source |:|

code

@ ©

&&&&
I 11

22

Motivation
@
)

3 BDD
I L
®

0e® .
san dibd

* Out-of-synch co-change
reduces benefits of BDD

* New developers
entering a project
struggle to understand
requirements

Identify code characteristics that can predict co-changes
between .feature files and source code files (BDD co-changes)
to help developers reduce out-of-sync BDD co-changes

ROC Curve

Our Top
Performing Model
Has 0.76 AUC

* Random Forest (0.76)
* Naive Bayes (0.74)

* Logistic Regression
(0.70)

Area under the
random forest
ROC curve is AUC

Analysis of Links in the Sample

Sample size of 451.

360 co-changing work items Our Approach

¢

actually linked together.

!

80% agreement rate after
inspection by another author.

Yields
79% Accuracy

Test Files and All Other Files Changes Are the
Strongest Predictors

1
| testfiles_added

Test files added
Other files
modified

Test files re-
named

I' otherfiles_mod

| testfiles_renamed
“sourceloc_del |
otherloc_added
import_loc_del
import_loc_added
testloc_added
sourcefiles_mod

methods_deleted

sourceloc_added

testloc_del

23

