
Noname manuscript No.
(will be inserted by the editor)

An Empirical Study on Release Notes Patterns of
Popular Apps in the Google Play Store

Aidan Z.H. Yang · Safwat Hassan ·
Ying Zou · Ahmed E. Hassan

Received: date / Accepted: date

Abstract Release notes of a new mobile release provide valuable information
for app users about the updated functionality of an app. Moreover, app de-
velopers can use the release notes to inform users about the resolution of a
previously reported issue in user reviews. Prior work shows that release notes
are an essential artifact for app developers to announce the emergency fixes
and the newly adopted features. However, little is known about the common
practices adapted by app developers in preparing their release notes.

In this paper, we are interested in capturing the common practices as
release notes patterns. First, we conduct an online survey with 102 respondents
to investigate their views on mobile release notes. Our results show that most
developers find release notes to be useful for notifying their user-base. Then,
we study release notes patterns by analyzing 69,851 releases and 67.7 million
user reviews of 2,232 top free-to-download apps in the Google Play Store over
three years (from April 2016 until April 2019). We observe that app developers

Aidan Z.H. Yang · Ying Zou
Software Evolution and Analytics Lab (SEAL)
Queen’s University
Kingston, Ontario, Canada
E-mail: {a.yang, ying.zou}@queensu.ca

Safwat Hassan
Department of Engineering
Thompson Rivers University
Kamloops, British Columbia, Canada
E-mail: shassan@tru.ca

Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)
Queen’s University
Kingston, Ontario, Canada
E-mail: ahmed@cs.queensu.ca

2 Aidan Z.H. Yang et al.

tend to write either long release notes (over 50 words) or short release notes
(less than 7 words).

We use the characteristics of release notes, such as the number of words, to
identify six patterns of release notes in mobile apps. We manually investigate
the release notes from each of the six patterns, and find 17 release drivers for
the release notes. We also find that apps with longer release notes tend to have
higher average user ratings. Furthermore, we observe that a shift from rarely
updated patterns to frequently updated patterns tend to have higher average
user ratings. Our work shows potential directions for developers to improve
the release note mechanisms in app stores.

Keywords Android mobile apps · Release notes · Google Play Store ·
Longitudinal study

1 Introduction

Mobile apps have become an integral part of our daily activities, and are used
for different purposes, such as playing games, performing social communica-
tions, and running financial and educational services. To fulfill the evolving
demand of the user-base of an app, developers need to frequently deploy new
releases that introduce new features and fix the previously reported issues in
the prior releases. A recent study on mobile app markets reports that there
are thousands of daily releases of mobile apps in the Google Play Store in
2018 [42].

To announce the changes in a new release, app stores (such as the Google
Play Store and the Apple App Store) enable developers to write the release
notes of the new releases. In particular, the release notes of a new release
should describe the changes in the latest release, the reason for the changes,
and the instructions for using the changes [5,15]. Descriptive release notes are
important for app developers as it enables developers to help app users better
understand how to use the newly introduced features and whether to install
the new release [5]. Hence, app stores require app developers to describe the
updates in their release notes [15].

Figure 1 shows an example of the release notes of the “Yard Sale Treasure
Map” app. As shown in Figure 1, developers of the “Yard Sale Treasure Map”
app use the release notes to describe the newly added features to app users.
Moreover, developers use the release notes to describe the resolved issues in
the new release. For example, the release notes of the version “15.9.1” of the
“FanFiction.Net” app mention the resolution of the Application Not Respond-
ing (ANR) issue that was reported in the prior release (“Fixed potential ANR
when app returns from idle on Android 9”).

Prior research shows that release notes are essential artifacts for app devel-
opers to announce the resolution of emergency issues and the implementation
of the requested features [11,19,20]. Existing research also relates information
of release notes with the success of an app [28, 36]. For example, Martin et

An Empirical Study on Release Notes Patterns in the Google Play Store 3

Fig. 1: An example of the release notes of the “Yard Sale Treasure Map” app
(the release version “7.6.0”).

al. [28] perform a causal analysis between the release notes and the app rat-
ing. Martin et al. find that the content of the release notes (e.g., release notes
that contain “bug”, “fix”, or “feature” words) has an impact on user ratings.

Despite the integral role of release notes in the mobile app market, to
the best of our knowledge, no prior work performs an in-depth analysis of
the release notes patterns that capture the common release notes practices in
mobile apps and how these patterns are associated with the user-perceived
quality of an app. We aim to identify the release notes patterns that correlate
the most with high user-perceived quality of an app. Our study can help app
developers better leverage the release notes to inform their user-base about the
changes in the new releases, and recommend the appropriate release patterns
to follow. In addition, gaining a solid foundation about release notes patterns
can help researchers understand limitations, potential challenges, and future
research directions for analyzing release notes of mobile apps.

In this paper, we identify release notes patterns of popular apps in the
Google Play Store. In particular, we analyze 69,851 releases and 67.7 million
user reviews of 2,232 top free-to-download apps in the Google Play Store over
three years (from April 2016 until April 2019). In our motivational study
(Section 2), we observe that the user of the 2,232 top apps complain about
the content of the release notes by leaving negative reviews. Furthermore, we
conduct a survey of 102 developers and observe that 90% of the collected
responses find it useful to notify the user-base with release notes.

Our motivational study shows that the selected popular apps are actively
updated during the studied period. In this work, our objective is to learn from
the developers of these popular apps about how the release notes are used
to communicate app updates to their users. In particular, we aim to identify
different patterns of release notes by addressing the following three research
questions:

4 Aidan Z.H. Yang et al.

RQ1: What are the release notes update patterns?
We explore the different release notes patterns to understand how devel-
opers write release notes to achieve higher user-perceived quality. We find
that app developers leverage release notes differently in terms of the length
of release notes and reusing their prior releases. We cluster apps based on
their length and updatability to find different patterns of writing release
notes. We measure length by the number of words in each release note.
We assess updatability by computing the cosine similarity between each
release note and all prior release notes of the same app. We identify six
patterns of release notes. Some patterns have low length (e.g., pattern 1
short low-updatability steady), while some patterns have high updatabil-
ity only during major releases (e.g., pattern 6 long rising-updatability with
major releases).

RQ2: What are the characteristics of the apps that follow a certain release
notes pattern?
We aim to understand if a particular release notes pattern correlates to
high user-perceived quality in order to help developers follow an appro-
priate pattern. To achieve this objective, we build six logistic regression
models (i.e., one model for each identified pattern in RQ1). We use 11 app
attributes (e.g., app size, app category, and app rating increase) as our in-
dependent variables. We observe that the apps clustered into each pattern
generally have different app attributes. For example, we find that apps
in pattern 5, long updating steady, includes apps with long and steadily
changed release notes. Apps in pattern 5 generally have fewer releases and
higher user-perceived ratings. Furthermore, apps in pattern 6, long rising-
updatability with major releases, covers apps with long release notes that
update mostly during major releases. Such pattern has higher developer
response rates. Therefore, our approach can help developers write release
notes that are highly correlated to high user ratings (i.e., release notes in
pattern 5). Our result also shows that developers can broadcast responses
to users using informative release notes (i.e., release notes in pattern 6).

RQ3: What causes developers to shift their release notes pattern?
To investigate why some apps change their release notes pattern and if
the changes can lead to higher user-perceived app quality, we perform a
qualitative analysis on the dataset. We first use stationary analysis [7] on
the characteristics of every app (e.g., length and updatability) and identify
53 apps that show a shift from one pattern to another. We then manually
examine the release notes of these 53 app. We observe that 34% of the
studied apps shift their release notes pattern due to a change from listing
functionality to providing user guidance (e.g., from describing new app
functions to teaching users how to use existing features). We also find that
most of the apps shifting from short to long and non-updating to updating
release notes exhibit an increase in user ratings.

An Empirical Study on Release Notes Patterns in the Google Play Store 5

The main contributions of this paper are as follows:

1. Our paper is the first work to perform a large-scale analysis of the release
notes practices of top free-to-download apps in the Google Play Store.
We observe that app developers have different release patterns concerning
length (i.e., being descriptive) or updatability (frequently updating their
release notes). However, the majority of app developers (59% of the studied
apps) tend to reuse their prior release notes.

2. We identify six patterns of release notes practices in mobile apps, and
we perform a manual analysis to find 17 release drivers described by the
release notes of each pattern. Furthermore, we identify the patterns that
most strongly correlate to high user-perceived app quality.

3. We analyze the shifts between patterns and how these shifts are correlated
to app ratings. Our work can help developers make informed decisions on
which release notes patterns to follow.

Paper Organization: The rest of the paper is organized as follows. In
2, we provide a motivational study for our work. In Section 3, we outline
the experiment setup. Section 4 presents the results with respect to our three
research questions. Section 5 presents the implications we draw from the re-
sults. Section 6 discusses threats to the validity of our results. In Section 7,
we examine related work. Finally, Section 8 draws conclusions to the paper.

2 Motivational Study

We perform a motivational study to determine the importance of release notes
for users and developers. In particular, we investigate (1) the user reviewers
from our collected app data, (2) how developers discuss release notes on ques-
tion and answer platforms, (3) the frequency of releases in our collected app
data, and (4) surveyed developer responses.

2.1 Analyzing user reviews

We first read through our collected user reviews and found that users do
read release notes. Users also leave negative reviews based on the quality of
the release note (e.g., a release note describes a release inaccurately). The
following five app reviews all correspond to release notes.

1. “When you publish release notes instead of saying the blanket bug fixes
maybe you should try to make a useful statement instead. ”

2. “Initial issue below was stated to be resolved in release notes, but it wasn’t
shown in the app”

3. “Setting up fingerprint login should have been announced in the release
notes not hidden in the options!”

6 Aidan Z.H. Yang et al.

4. “The release notes are not helpful and don’t actually explain what changed
between minor updates so it’s anyone’s guess if any particular issue has
been addressed or if the update will just make things worse.”

5. “I rarely care about the feels-like temperature. So thanks but uninstalling.
Might check your release notes to see if fix this.”

Review 1 suggests general improvements to the release notes of an app.
Reviews 2, 3 and 4 are concerned with the inaccuracies or the lack of informa-
tion in the release notes. Review 5 suggests that the user is not happy with
the status of the app, but will read the release notes in the future to determine
if the app is worth using again.

2.2 Analyzing question and answer platforms

We observe from two Stack Overflow questions that developers care about
writing their release notes. In the first Stack Overflow question1, a user asks
about the content developers should usually include in release notes. Other
Stack Overflow users recommend that release notes should “summarize the new
developments, features, and bug fixes in a broad, sweeping way if possible”.
In the second Stack Overflow question, a user asks how to generate Azure
DevOps release notes2.

We find that users also tend to read mobile release notes from a survey
conducted on Reddit3. The Reddit survey finds that, of the 372 responses from
Reddit users, 311 (83.6%) read release notes. 320 users responded that they
read release notes to find out “what’s new or changed” in an app4.

A recent study surveyed mobile developers of different apps to learn that
writing a good release note is challenging for developers5. For example, the
Transit app tries to use release notes to show the personality of the company
while keeping release notes informative. Furthermore, experts in software de-
sign urge designers to make more engaging release notes6.

2.3 Analyzing frequency of releases

we analyze whether developers of the studied apps actively update their apps
by measuring the time-to-release of all the collected 69,851 releases. We mea-

1https://stackoverflow.com/questions/638423/how-should-release-notes-be-

written
2https://stackoverflow.com/questions/56774669/is-there-any-way-to-order-

group-work-item-type-in-azure-devops-release-notes
3https://medium.com/@scottydocs/do-people-actually-read-release-notes-

449d099d73ee
4https://medium.com/@scottydocs/do-people-actually-read-release-notes-

449d099d73ee
5https://uxdesign.cc/design-better-release-notes-3e8c8c785231
6https://spectrum.ieee.org/tech-talk/telecom/internet/the-art-of-writing-

app-release-notes

https://stackoverflow.com/questions/638423/how-should-release-notes-be-written
https://stackoverflow.com/questions/638423/how-should-release-notes-be-written
https://stackoverflow.com/questions/56774669/is-there-any-way-to-order-group-work-item-type-in-azure-devops-release-notes
https://stackoverflow.com/questions/56774669/is-there-any-way-to-order-group-work-item-type-in-azure-devops-release-notes
https://medium.com/@scottydocs/do-people-actually-read-release-notes-449d099d73ee
https://medium.com/@scottydocs/do-people-actually-read-release-notes-449d099d73ee
https://medium.com/@scottydocs/do-people-actually-read-release-notes-449d099d73ee
https://medium.com/@scottydocs/do-people-actually-read-release-notes-449d099d73ee
https://uxdesign.cc/design-better-release-notes-3e8c8c785231
https://spectrum.ieee.org/tech-talk/telecom/internet/the-art-of-writing-app-release-notes
https://spectrum.ieee.org/tech-talk/telecom/internet/the-art-of-writing-app-release-notes

An Empirical Study on Release Notes Patterns in the Google Play Store 7

Table 1: The mean and five-number summary of the median time-to-release
(days) of all releases of an app.

Mean Min 1st Qu. Median 3rd Qu. Max

41.1 1.0 13.0 22.0 41.0 888.0

1 or less 2-5 6-10 11+

8%

36% 35%

21%

Fig. 2: The distribution of the years of experience of the surveyed developers.

sure the time-to-release of a release Ri as the time between current release
Ri and immediate prior release Ri−1. Finally, we measure the median time-
to-release of all releases of an app. We find that developers actively release
new releases. In particular, we observe that the majority (75%) of the studied
apps have a median time-to-release of under 41 days (Table 1), which indicates
that the studied apps are actively maintained by their frequent new releases.
Some apps have very frequent releases, so median time-to-release is one day.
For example, the “slither.io” app has five patch releases, with each one day
apart. On the other hand, apps in the high extreme (above 600 days) have
only three or fewer total releases during the studied period, with each over a
year apart. For example, the “Monogram It!” app has two releases: the first in
February 2017, and the next in December 2018. The low frequency of releases
may indicate that this app is not actively maintained by its developers.

2.4 Surveying developers

In addition to release frequency, we survey mobile developers on their percep-
tion of writing release notes. We design a survey that consists of questions
relating to the background of developers (e.g., the years of experience partici-
pants have in mobile development, or the category of the app the participants

8 Aidan Z.H. Yang et al.

Development

Testing and quality assurance

Release management

Configuration management

Product support

Project Management

20%

21%

15%

14%

17%

11%

Fig. 3: The distribution of the job roles of the surveyed developers.

are currently working on), and their view on the function and importance of
release notes (e.g., do the participants use the release notes to respond to user
reviews). Table 14 shows the questions we used for the survey. To ensure that
the participants of a specific organization or app type do not bias our survey,
we send our survey to developers through multiple communications as follows.

We retrieve a list of 922 open-source Android apps from F-Droid7. For each
app, we send our survey to the contact email addresses of developers provided
by the Google Play Store or GitHub. We also retrieve the contact emails from
the 2,232 top free-to-download apps used in RQ1-3, and post our survey to
Reddit mobile development groups8,9. Of the 922 contacted developers, we
receive 102 responses (i.e., a response rate of 11%)

Responses to background questions. Figure 2 and Figure 3 show the de-
velopers responses to background questions. 21 % of the participants were test
engineers, 19% of them were developers, 17% of them were product support
engineers, 15% of them were release management engineers, 15% of them were
configuration management engineers, 11% of them were program managers,
and 2% were in other roles. We observe that 58% of the participants have
2-5 years of mobile development experience. 30% of the participants are cur-
rently working on “Browser” related apps, 20% of them are currently working
on “News” related apps, and 19% of them are currently working on “Video
Editor” related apps.

Responses to release note practice questions. As shown in Figure 4 and
Figure 5, 51% of the participants responded that they frequently update their
release notes, and 4% of the participants responded that they never update

7https://f-droid.org/en/
8https://www.reddit.com/r/androiddev
9https://www.reddit.com/r/appdev/

https://f-droid.org/en/
https://www.reddit.com/r/androiddev
https://www.reddit.com/r/appdev/

An Empirical Study on Release Notes Patterns in the Google Play Store 9

Very frequently Often Sometimes Rarely Never

16%

51%

22%

8%

4%

Fig. 4: Developers’ answers for frequency of release note update.

90%

83%

78%

9%

11%

14%

1%

6%

8%

It is useful to notify the user-base

Release notes can respond to users

It would be useful to have a tool to

generate release notes

Agree Neutral Disagree

Fig. 5: Developers’ answers for release note uses.

their release notes. 90% of the participants agree that it is useful to notify their
user base about app updates, and 83% of the participants agree that release
notes can be used to respond to user reviews. When asked about methods to
help developers write release notes, 78% of the participants agree that they
would appreciate a tool for generating release notes.

10 Aidan Z.H. Yang et al.

Summary

Our motivational study shows that users leave negative reviews based
on the content of the release notes. Developers from various blogs and
question and answer platforms understand the importance of writing
release notes for their user-base. From our survey results, we observe
that developers frequently update their release notes, and understand
the importance in using release notes to update and respond to their
users.

3 Experimental Setup

In this section, we outline our data collection and data processing steps. Figure
6 gives an overview of our approach for collecting the release notes and user
reviews of the studied apps and analyzing the collected data.

3.1 Data Collection

Step 1: Select top Android Apps. In our study, we focus on popular apps
as developers of these apps need to actively maintain their apps by regularly
updating their apps to satisfy the needs of their user-base [35]. Furthermore,
we select the most popular apps because they have a large user-base. With
larger user-base apps, we can measure the user perception of the apps, the
dialogue between developers and users, and how the release notes are involved
in the user-developer dialogues. We collect the list of top popular apps using
the App Annie report [1]. We select the top 100 apps in each of the available
28 app categories (e.g., games and tools categories) in the Google Play store.
We find that 214 apps are repeated across app categories, and 354 apps are
already removed from the store at the start of our studied period. In total, we
select 2,232 apps for our study.

Step 2: Crawl app data. We ran a crawler that is customized based on the
Akdeniz [4] Google Play crawler to collect data of the selected 2,232 apps. In
particular, we collect the following data for each studied app:

1. App metadata: General data that gives insights on the characteristics of
each app (e.g., app title, app description, the number of downloads, and app
ratings).

2. App releases: For each release, we collect the release date, release notes
content, and the release version string (e.g., 4.2.3).

3. User-developer dialogues: We collect all reviews and developers’ re-
sponses for each app.

We collected data of the studied 2,232 apps over the period of three years
from April 2016 to April 2019. In particular, we collect 69,851 releases with
67,697,919 user reviews and 2,902,944 developer responses.

An Empirical Study on Release Notes Patterns in the Google Play Store 11

1) Collecting app data

Crawl app
data over 3

years

Select top
Android

apps

69,851 releases
 of 2,232 apps

Perform
lemmatization

Measure
cosine

similarity

Measure the number of
used words

Identify the version string
difference between releases

Ri and Ri-1

3) Processing app data

Content
updatability

Google Play
Store

Release
notes

content

Release
version
string

Length

Release type

2) Filter the studied
apps based on the

release note features

RQ1: Identify
release notes

patterns

RQ2: Study the
characteristics

of apps in every
pattern

RQ3: Identify
causes of

pattern shifts

Fig. 6: An overview of our approach for collecting, filtering, and processing
release notes data.

3.2 Data Filtration

We filter the initial 2,232 apps to ensure that all studied apps have sufficient
data for further analysis. First, we remove apps with fewer than three release
notes in the three-year studied period as apps with only one or two releases do
not contain sufficient data to be accurately clustered into a meaningful release
notes pattern (RQ1). We also remove apps with nontraditional version strings,
such as four numbers separated by dots (e.g., “2.24.3.4”). Since we cannot
use semantic versioning (i.e., version strings represented by three numbers
separated by dots), we cannot determine the release type of nontraditional
version strings. As the result of the data filtration steps, our dataset contains
58,069 releases of 1,712 apps.

3.3 Data Processing

In this section, we describe the processing steps to identify the release type
(i.e., major, minor, or patch release) and deriving app attributes that capture
the releasing practice of an app.

12 Aidan Z.H. Yang et al.

3.3.1 Identifying the Release Type for the Studied Releases

To identify the release type for the studied releases, we use semantic versioning
[39] to classify the studied releases into three types: major, minor, and patch.
According to release practice guidelines, major releases occur when developers
make incompatible API changes, minor releases occur when developers add
functionality in a backward-compatible manner, and patch releases occur when
developers make backward-compatible bug fixes [39]. We determine the release
type for each release by comparing the version string of the current release Ri

and the version string of the prior release Ri−1. A version string consists of
three numbers separated by dots/periods (xi.yj .zk). A major, minor, and patch
release occur when the first, second, and third number changes, respectively.
(xi+1.yj .zk is a major release, xi.yj+1.zk is a minor release, and xi.yj .zk+1

is a patch release). In the case of multiple numbers changing, then major
dominates minor/patch, and minor dominates patch (xi+1.yj+1.zk+1 is a major
release) [39].

3.3.2 Identifying the Release Notes Features

To understand the usage of release notes in practice, we extract three release
notes features that are used in RQ1. To derive the release note features, we
perform a manual investigation on a randomly selected sample of the 58,069
release notes. Using a confidence level of 95% and a confidence interval of 10%,
we manually investigate 96 release notes. We read through all 96 release notes
to gain insight on how developers express the new changes in the release notes.
We observe that long release notes may include more information (e.g., a list of
added features). However, some app developers tend to reuse the prior release
notes. Therefore, we design two release notes features based on the length and
the cosine similarity of release notes. We also observe that the release type
(i.e., major, minor, and patch releases) may impact the cosine similarity of
the release notes. Therefore, we design a third release notes feature based on
the cosine similarity during a major release. We describe the extracted features
as follows.

1. Length: We measure the length of the release notes by counting the num-
ber of unique words in the release notes text.

2. Content updatability: The content updatability of the release notes rep-
resents how frequently the release notes content is updated. To quantify
the content updatability of the release notes for a release Ri, we measure
the cosine similarity of the unique keywords between Ri and all prior re-
leases. We choose to include all prior releases by considering the cases in
which developers repeat release notes before the prior release Ri−1.
To measure the cosine similarity, we remove punctuation and perform
lemmatization on each word of every release note. Lemmatization is the
process that converts all words of a sentence into its base form. For example,
the lemmatization of “fixing” is “fix” [38]. We use Stanford CoreNLP [26]

An Empirical Study on Release Notes Patterns in the Google Play Store 13

for the lemmatization process. Cosine similarity is a value between 0 and
1, where 0 signifies no similarity and 1 signifies identical release notes be-
tween the consecutive releases Ri and all prior releases. We exclude the
first release of each app (R1) as it does not have a prior release to calculate
the cosine similarity for R1.
Finally, we calculate the content updatability of the release notes as the
inverse of the cosine similarity (i.e., 1 - cosine similarity for all previous
release notes). Content updatability is a measure of how varied the release
notes are in comparison to all prior release notes of an app. A content
updatability close to 1 signifies a high degree of release notes change, and
a content updatability close to 0 represents a low degree of release notes
change.

3. Content updatability for major releases: We observe that major re-
leases tend to have the most updated release notes compared to the minor
and patch releases (Figure 7a). For minor and patch releases, the release
notes are frequently updated after major releases (Figure 7b). From the
two observations regarding major releases, we use content updatability for
only major releases as a feature to identify release note patterns.

To ensure that the length, updatability, and updatability measured only
for major releases provide different insights into release notes styles, we mea-
sure the correlation between the extracted features using the Spearman rank
correlation coefficient [30]. We find that length and updatability have a corre-
lation of 0.079 and a p-value of 2.1× 10−73. We find that updatability for all
releases and updatability measured only for major relases have a correlation
of 0.23 and a p-value of 3.4 × 10−4. Finally, we find updatability measured
only for major releases and length have a correlation of 0.094 and a p-value of
7.4× 10−54. Therefore, the three measured features are not correlated to each
other, and we used the three measured features to identify the release notes
patterns in mobile apps.

4 Results

In this section, we present our study in terms of three research questions. For
each research question, we discuss the motivation, approach, and the obtained
results.

RQ1: What are the release notes update patterns?

Motivation: The main objective of this work is to identify release notes pat-
terns and to understand the patterns that correlate to high user-perceived
quality. Hence, we can help developers better understand how to write the re-
lease notes in order to improve the perceived quality of their apps. To achieve

14 Aidan Z.H. Yang et al.

T
he

 u
pd

at
ab

ili
ty

 o
f r

el
ea

se
 n

ot
es

Major Minor Patch

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) The distribution of updatability by the release type

T
he

 u
pd

at
ab

ili
ty

 o
f r

el
ea

se
 n

ot
es

Minor Patch

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prior release major
Prior release not major

(b) The distribution of updatability for minor and patch releases

Fig. 7: The updatability of the studied release notes (grouped by the release
types).

this goal, in this RQ, we aim to identify the most common release notes pat-
terns using the characteristics (e.g., the release notes length) of the studied
release notes.

Approach: Our approach for investigating release notes patterns involves the
following three steps.

An Empirical Study on Release Notes Patterns in the Google Play Store 15

Table 2: A summary of the six identified patterns.

Pattern
ID

Pattern Name Number
of Apps

Length Updatability Updatability
for Major
Releases 10

1 Short non-updating steady 439 11.5% 19.8% 16%

2 Short updating steady 111 16.6% 81.1% NA

3 Short rising-updatability with
major releases

157 31.0% 39.7% 97.1%

4 Long non-updating steady 572 81.0% 27.5% 18.4%

5 Long updating steady 145 92.9% 74.9% NA

6 Long rising-updatability with
major releases

288 85.2% 42.8% 96.5%

Step 1: Deriving app attributes that capture the releasing practice
of an app. We use three features (i.e., length, updatability, and updatability
for only major releases) to capture the characteristics of release notes practice
of an app (as described in Section 3).
Step 2: Summarizing the characteristics of app release notes along
with the derived features. We calculate the percentage of releases of an
app with features above the third quantile. We use the percentage of high
value (i.e., above the third quantile) in comparison to the median and the
average values as we observed that the percentage of high value provides an
unbiased representation for each app. In particular, the median metric value
does not take into account extreme values, and the average metric value could
be skewed by extreme values.
Step 3: Identifying app releasing patterns. We use K-means clustering
[17] on the summarized release notes features to find different release notes
patterns from the clusters. We find the optimum number of clusters from the
Gap Statistic method [43].
Step 4: Evaluating app releasing patterns. We use the silhouette vali-
dation technique to evaluate our clustering algorithm. The silhouette valida-
tion [40] measures the separation distance between each cluster. We compare
the dissimilarity of release notes with other release notes of the same cluster
to find the silhouette value S(i), as defined in Equation 1.

S(i) =
b(i)− a(i)

max(b(i), a(i))
(1)

Where a(i) is the average dissimilarity of the characteristics of the release notes
of an app in a cluster to the characteristics of the release notes of the other
apps in the same cluster and b(i) is the minimum of the average dissimilarity
of the release notes of an app to the release notes of the apps in the other

10Apps in pattern 2 and pattern 5 do not have major releases during our studied period,
so the centroid for major releases updatability in patterns 2 and 5 are NA

16 Aidan Z.H. Yang et al.

clusters. The silhouette value has a range between -1 and 1, in which a value
close to -1 implies poor clustering performance and a value close to 1 implies
good clustering performance.

Results: We find six clusters as the optimum number of clusters. The average
silhouette value for each release notes pattern is 0.58. A value over 0.5 (i.e, 0.58)
suggests a reasonably good clustering of release notes [40]. Table 2 shows the
summary of the six identified patterns. Using the clustering centroid for each
of the summarized three features, we tag each pattern with the appropriate
pattern name. For example, we name pattern 1 “Short non-updating steady”
because apps that belong to pattern 1 have short and repetitive release notes
content.

In addition to the clustering process based on syntactic features, we per-
form a manual analysis to further understand the release notes in every pat-
tern. The manual analysis does not attempt to find further classification. In-
stead, we need to understand the drivers for releasing a new release. Our
manual analysis includes the following steps:

Step 1: Select sample of the studied apps. Manually analyzing the release
notes of all apps is a tedious and time consuming process. Hence, we selected
a statistically representative random sample of release notes that belong to
the identified six patterns (with a confidence level of 95% and a confidence
interval of 10%). In total, we randomly selected 559 release notes belonging to
405 apps. Table 3 shows the characteristics of the selected release notes.

Step 2: Identify the drivers for the new release. The first and the
second author of this paper manually read the release notes of every release
independently and identified the drivers for releasing this release. For example,
a release with the release notes “Fix for Motorla Android 8” has a driver
“platform and device support”. When a new driver is identified during the
analysis of the release notes, it is added to the list of drivers, and all release
notes were reanalyzed using the new list of identified drivers. During this
process, we conducted three revisits of all release notes to identify all drivers.
We conclude our analysis after reading all 559 release notes and no further
drivers were found.

Step 3: Finalize the list of drivers of each release. For every studied
release note, we compared the two lists of identified drivers that are generated
by the two coders . We then calculate the Kohen’s Kappa inter-rater agree-
ment [9] between the two authors. Cohen’s Kappa value ranges from -1 to
+1. A Cohen’s Kappa value of +1 means that both coders identified the same
drivers for all analyzed release notes. For our analysis, we calculate a Cohen’s
Kappa value of 0.90, which is an almost perfect agreement according to the
interpretation of the Cohen’s Kappa value proposed by Landis et al. [25].

An Empirical Study on Release Notes Patterns in the Google Play Store 17

Table 3: The sample size for each pattern for manual analysis.

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6

Total number of apps 439 111 157 572 145 288

Total number of release notes 11704 1044 4467 24786 1840 9295

Sample number of apps 71 55 58 86 57 78

Sample number of release notes 95 88 94 95 91 95

Table 4: Types of content for release notes in the 91 manually investigated
apps.

Release driver Description Example

General bug fix The release notes contain bug
fixes without mentioning the de-
tails of the fixed bugs.

“Bug fix”, “fix some bugs”, and
“Bug fixes”

General
improvements

The release notes contain im-
provements without mentioning
the details of such improvements.

“New improvements.”

Detailed bug fix The release notes describe the
details of the fixed issues.

“Fixed issues with re-borrowed ti-
tles.”

Detailed
improvements

The release notes describe the
details of the feature improve-
ments.

“Improved interstitial ads dis-
play.”

Performance The release notes describe an im-
provement to the performance of
an app.

“Enhanced invoice perfor-
mance.”

New features The release introduces new fea-
tures to the user-base.

“Added some new emoji re-
source”

Coming soon The release notes announce fea-
tures coming soon to the app.

“New game coming soon.”

Permission and
security

The release notes contain per-
mission and security-related
changes.

“Added Privacy Policy.”

Platform and
device support

The release notes contain
changes accommodating soft-
ware or hardware updates (e.g.,
Android version changes).

“Fix for Motorola Android 8.”

UI The release notes contain user
interface (UI) changes, such as
changing the layout, the colors,
or the UI design of the app.

“Icons added to all overflow
menus.”

Localization The release notes provide
language-related changes.

“Added Ukrainian language.”

Crash The release notes contain crash
fixes.

“Fixed a crash on empty com-
ments.”

Resource
utilization

Resource improvements (e.g.,
app size, memory, battery us-
age).

“Game improvements for mem-
ory.”

Ask for feedback The release notes ask users for
their feedback.

“Found a bug we missed? Please
let us know here: ...”

Advertisement The release notes promote new
offers or discounts.

“Limited time pricing for new
subscribers now $9.99/month.”

Provide support The release notes guide users on
how to handle issues or to use
new features.

“Tip: save a search and we’ll let
you know when new homes hit
the market that meet your crite-
ria.”

Non-informative The release notes do not men-
tion any information about the
release changes.

“The long-awaited major update
is finally here!”

18 Aidan Z.H. Yang et al.

Table 5: The frequency of release drivers in the 91 manually investigated apps.

Drivers Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6

General bug fix 56% 26% 40% 35% 21% 36%

Detailed bug fix 10% 20% 3% 9% 25% 14%

General improvement 23% 12% 26% 25% 24% 17%

Detailed improvement 5% 7% 6% 10% 15% 5%

Performance 7% 4% 4% 9% 2% 6%

New feature 15% 21% 25% 42% 40% 40%

Permission and security 0% 3% 2% 4% 8% 1%

Platform Device Support 6% 14% 7% 4% 17% 4%

UI 9% 9% 12% 21% 19% 22%

Localization 1% 3% 1% 5% 6% 2%

Crash 1% 5% 4% 4% 6% 5%

Resource utilization 4% 0% 2% 1% 12% 4%

Ask for feedback 0% 3% 1% 24% 9% 12%

Advertisement 0% 3% 1% 10% 4% 7%

Non informative 0% 1% 1% 8% 2% 4%

Provide support 3% 2% 0% 0% 8% 2%

As a result of our manual analysis, we manually label the 559 release notes
with 17 release drivers. As shown in Table 4, we found a total of 17 drivers.
Table 3 shows the statistically representative number of release notes and apps
selected. Table 5 shows the frequency of the 17 labels for the six patterns.
For each driver in Table 5, we highlight the highest frequency release note
pattern. In general, we observe that apps with shorter release notes (i.e., apps
in patterns 1, 2 and 3) tend to have more release notes describing general
bug fixes. Apps with longer and more frequently updated release notes (i.e.,
apps in patterns 5 and 6) tend to have more release notes describing added
features or UI changes (42% of pattern 4 release notes describe new features,
22% of pattern 6 release notes describe UI changes). Apps in patterns 2 and
5 (i.e., apps with updating release notes) tend to describe platform device
specific fixes (14% and 17%, respectively), and detailed bug fixes (20% and
25%, respectively).

Tables 6 and 7 show the release notes of example apps for each identified
pattern. The six patterns can be explained as follows.

An Empirical Study on Release Notes Patterns in the Google Play Store 19

Table 6: Examples of release notes from short release notes patterns (pattern
1-3).

Version
String

Release
Type

Release Notes

Pattern 1: Short non-updating steady - Example app: “Old Navy”

2.3.4 minor “GUI enhancements and minor fixes”

2.3.5 patch “GUI enhancements and minor fixes”

2.3.6 patch “GUI enhancements and minor fixes”

2.3.7 patch “GUI enhancements and minor fixes”

2.3.8 patch “GUI enhancements and minor fixes”

Pattern 2: Short updating steady - Example app: “NPR News”

2.7.0 minor “Fix a bug of the grouping separator. Improved calculation precision”

2.7.1 patch “Notifications will open the corresponding story correctly again. Thanks for
your feedback.”

2.7.2 patch “This release properly respects opting out of news alerts. Thank you for your
feedback which enabled us to quickly address this issue.”

2.7.3 patch “This release fixes a minor issue impacting some users subscribing to news
alerts.”

2.7.4 patch “Fixed audio playback issue impacting 8.0+ Android devices. Thank you for
your feedback!”

Pattern 3: Short rising-updatability with major releases - Example app: “UpToDate”

6.4.1 patch “Bug fixes”

6.4.2 patch “Bug fixes”

7.0.2 major “New design easy navigation and a stunning new display! Customize your
topics and locations to get news just for you. Live video breaking news traffic
and weather alerts in real-time.”

7.0.3 patch “We made a number of bug fixes and updates in response to user feed-
back and we’re still working on others. Here are some of the updates in
this release: Fixed bug that allowed device to go into sleep mode while view-
ing video. Fixed bug with persistent location services permission requests.
Updated weather maps and web cams to support landscape orientation and
sharing. Other bug fixes and enhancements.”

Pattern 1 (Short Non-updating Steady Pattern):

Frequency: As shown in Table 2, pattern 1 is the second most common pat-
tern in the studied apps (i.e., 439 apps).

Description: Apps in pattern 1 generally have short and rarely updated re-
lease notes. More specifically, minor changes are made to the content of release
notes during major releases. After the first two authors read through a statis-
tically representative random sample of 95 release notes that belong to pattern
1, we observe that apps in this pattern rarely use major releases, and tend to
write words “enhancements” and “bug fixes” in their release notes. We observe
from Table 5 that 56% of the release notes in Pattern 1 mention general bug
fixes, and 23% of the release notes in Pattern 1 mention general improvements.
We also observe that apps in pattern 1 generally reuse the same text in all

20 Aidan Z.H. Yang et al.

their release notes. For example, the “Old Navy” app, listed in Table 6, uses
identical release notes throughout the studied period.

Pattern 2 (Short Updating Steady Pattern):

Frequency: As shown in Table 2, pattern 2 is the least common pattern in
the studied apps (111 apps).
Description: Apps in pattern 2 use short release notes that succinctly de-
scribe changes. We observe that app developers in pattern 2 sometimes men-
tion user reviews in their release notes and describe what they did to address
user concerns. For example, as shown in Table 6, developers of the “NPR
News” app mention in the patch release version “2.7.2” that the newly im-
plemented features address the feedback from the user-base of the app: “This
release properly respects opting out of news alerts. Thank you for your feedback
which enabled us to quickly address this issue”.

After the first two authors read through a statistically representative ran-
dom sample of 94 release notes that belong to pattern 2, we observe that
release notes in this pattern frequently mention both general and detailed bug
fixes (26% and 20%, respectively), as well as new features and support for de-
vices and platforms (21% and 14%, respectively). The updated release notes
describe the overall enhancements of an app such as (1) performance and sta-
bility improvements, (2) UI enhancements, (3) providing support for the latest
version of the Android platform, (4) offering app controlling features through
the settings screens, (5) reducing advertisements, and (6) reducing the app
size.

Pattern 3 (Short Rising-updatability with Major Releases Pat-
tern):

Frequency: As shown in Table 2, pattern 3 contains 157 apps.
Description: Apps in this pattern frequently use “Bug fixes” keywords with
minor details that changes with each release notes (e.g., “Bug fix - language
menu”). For most major releases, developers add more detail. For example,
developers of the “UpToDate” app (Table 6) write identical release notes until
a major release, in which multiple new functionalities are added. After the
major release (version “7.0.2”), subsequent patches are more varied as well.

After the first two authors read through a statistically representative ran-
dom sample of 94 release notes that belong to pattern 3, we observe that release
notes in this pattern mostly describe general bug fixes and improvements (40%
and 26%, respectively).

Pattern 4 (Long Non-updating Steady Pattern):

Frequency: As shown in Table 2, pattern 4 is the most common pattern in
the studied apps (572 apps).
Description: We find that apps in pattern 4 have release notes with long
content, but the release notes are rarely updated. As show in Table 7, the
releases of the “NYC Subway Map” app contain long release notes. However,
the content of the release notes is not updated.

An Empirical Study on Release Notes Patterns in the Google Play Store 21

After the first two authors read through a statistically representative ran-
dom sample of 95 release notes that belong to pattern 4, we observe that
release notes in this pattern tend to mention new features and ask for user
feedback (42% and 24%, respectively).

Pattern 5 (Long Updating Steady Pattern):

Frequency: As shown in Table 2, pattern 5 is the least common pattern in
the group of the studied apps with long release notes (145 out of 1,005 apps).
Description: The first two authors read through a statistically representative
random sample of 91 release notes that belong to pattern 5. We find that
release notes in pattern 5 have detailed and descriptive release notes that
are frequently updated. In particular, release notes frequently describe the
added or improved functionalities in detail (40% describe new features, and
15% describe detailed improvements). For example, developers of the “Yard
Sale Treasure Map” app (Table 7) use release notes to describe all added
functionalities. We also observe that the developers in the “Yard Sale Treasure
Map” app leverage the release notes to communicate technical modifications
and problems within the app (e.g., “!!! Emergency fix for server problem!!!”
in version “7.0.2”)

We find that the release notes in Pattern 5 provide more platform specific
support (17%), resource utilization support (12%), and user specific support
(8%) as compared to release notes of other patterns. We observe from specific
examples that app developers in pattern 5 change their release notes due to
negative reviews and app crashes. For example, the “My Pregnancy and Baby
Today” app introduced a new functionality in version “3.4.0” after receiving
negative reviews (“Message received! You told us you wanted the ability to
share articles and videos with your family and friends. So thank you for all
the feedback and we’re happy to introduce Sharing”).

Pattern 6 (Long Rising-updatability with Major Releases Pat-
tern):

Frequency: As shown in Table 2, pattern 6 contains 288 apps.
Description: The first two authors read through a statistically representative
random sample of 95 release notes that belong to pattern 6. Apps in pattern
6 have repetitive release notes during minor and patch releases that mention
newly added features (40%) and general bug fixes (36%). Release notes are
updated as the major releases and the updated release notes are generally
written for large functionality update, such as UI changes (22%) and detailed
bug fixes (14%) For example, the “Shopular” app (Table 7) contains mostly
repetitive release notes except for the major release “7.0.1”, in which the
release notes are updated due to a holiday event (e.g., Black Friday).

We also observe that developers in pattern 6 use the release notes way
to broadcast a response to many user reviews. For example, we observe from
Table 8 that the “Staples” app frequently addresses specific user concerns. We
find a two-star user review on December 24st 2016 with regards to the rewards
section. A week after the user review (December 31st 2016), the “Staples” app

22 Aidan Z.H. Yang et al.

Table 7: Examples of release notes from long release notes patterns (pattern
4-6).

Version
String

Release
Type

Release Note

Pattern 4: long non-updating steady - Example app: “NYC Subway Map”

4.0.1 major “All new! The sharpest map out there save your favorites tap on stations
interactively get directions...”

4.0.3 patch “All new! The sharpest map out there save your favorites tap on stations
interactively get directions...”

4.0.4 patch “All new! The sharpest map out there save your favorites tap on stations
interactively get directions...”

Pattern 5: long updating steady - Example app: “Yard Sale Treasure Map”

6.3.1 patch “Improving map efficiency (busy yard sale areas will see smoother map up-
dates) - Bug fixes with Change Location feature - New app icon 6.3.0 ...”

6.4.0 minor “Minor release fixing bugs that could cause crashes. What’s New - New
feature to viewed sales - New feature to check off visited sales in your route
- New option to use Waze for navigation to sales What’s Different ...”

6.4.1 patch “!!! Emergency fix for server problem !!! Adding tutorial showcases for some
features - Fixing route line problem to draw lines from current location in-
stead of last searched location ...”

Pattern 6: long rising-updatability with major releases - Example app: “Shopular”

6.8.0 minor “We’ve made the highest-rated coupons - cash back app even better by adding
more stores and deals. Happy shopping!”

6.9.2 minor “We’ve made the highest-rated coupons - cash back app even better by adding
more stores and deals. Happy shopping!”

7.0.1 major “Black Friday 2017 is right around the corner! Our team works around the
clock to bring you ad scans and the best Black Friday deals as soon as they
are released.”

7.0.4 minor “We’ve made the highest-rated coupons - cash back app even better by adding
more stores and deals. Happy shopping!”

released version 5.4.1 and responded to the user. Moreover, the developers on
the “Staples” app addressed the negative user reviews in their release notes,
and incorporated both the review and the release notes message in the response
message.

Through the manual investigation of the six identified patterns from our
representative sample of 559 apps, we find that long release notes do not
necessarily provide information about the latest updates in a new release.
For example, the provided instructions or advertisement for an app are often
repetitive and do not indicate developer activities. However, updating release
notes generally leads to descriptive and leveraged release notes.

Apps in the long and updating patterns leverage release notes to inform
customers on a specific release. Long release notes discuss new functionalities
in detail and explain why/how they were added. Furthermore, apps in pattern
6 (i.e., long rising-updatability with major releases) tend to use release notes

An Empirical Study on Release Notes Patterns in the Google Play Store 23

Table 8: The user-developer dialogue and the release notes of the “Staples”
app.

Type Time Content

User review December 24st

2016
“Your app has fallen back into a nearly terrible category.
Rewards section rarely works can never fetch order statuses
and browsing in the app is poor. Best Buy’s app is leaps and
bounds better”

Release
Notes

December 31st

2016
“We made some tweaks for this release that address the fol-
lowing issues: Redesigned account page so you can check your
rewards and order history more easily. . . ”

Developer
Response

December 31st

2016
“Hi we have made some recent updates to the app. Thank you
for reaching out. If you update your app version the perfor-
mance should be improved”

to address user concerns in the most updated release notes (i.e., release notes
of major releases).

Summary

We identify six patterns of release notes with different characteristics
and 17 drivers for the new releases. App developers dominantly ap-
ply the short non-updating steady pattern (26% of apps) and the long
non-updating steady pattern (33% of apps) to write release notes. Non-
updating release notes (apps in patterns 1 and 4) tend to repeat words,
such as “bug” and “improvements”, while updating release notes tend
to explicitly mention the addressed issues and demonstrate the emer-
gency nature of the new release.

RQ2: What are the characteristics of the apps that follow a certain
release notes pattern?

Motivation: In the previous RQ, we identify six patterns based on the char-
acteristics, such as length and updatability, of the release notes. In this RQ,
we are interested in discovering the common attributes across the apps that
belong to the same release notes pattern. For example, we want to see if a
descriptive and non-updating pattern mainly occurs in certain app categories
or certain app download ranges. Furthermore, understanding the correlation
between release note patterns and the releasing practices of an app can give
advice to developers on how to prepare their release notes. In particular, find-
ing the correlation between release note patterns and the perceived quality of
an app (e.g., average release rating) can provide guidance for developers to
follow some of the six patterns.

Approach: To further understand release notes patterns, we build six different
models to identify the correlation between app-related attributes and each of

24 Aidan Z.H. Yang et al.

the six identified patterns. Our approach consists of three steps: (1) collecting
the app-related attributes, (2) constructing the models, and (3) analyzing the
constructed models.

Step 1: Collecting the app-related attributes. We use app specific at-
tributes as independent variables in predicting whether an app belongs to
pattern i, where i ∈ {1, 2, .., 6}. As listed in Table 9, we measure 11 app-
related attributes that can potentially correlate to release notes styles. We
choose these attributes based on prior research regarding the Google Play
Store apps and release notes [18,20,28,36,37].

For the keyword attributes (i.e., bug-related releases, improvement-related
releases, and emergency-related releases), we use word2vec [14] on all release
notes words to expand our initial keyword sets (i.e., “bug”, “issue”, “enhance”,
“fix”, “improve”, “emergency”, and “urgent”). For example, the word “bug”
appears frequently with the word “fix” (e.g., “minor bug fixes”) on all re-
lease notes, so word2vec groups the words “bug” and “fix” together as related
words. When searching for bug-related releases, any release notes that include
the words “fix” or“bug” are flagged as a bug-related release. The Appendix
describes the list of keywords that are used to identify bug-related releases,
improvement-related releases, and emergency-related releases.

Finally, we remove the highly correlated attributes. We measure the cor-
relation between the collected attributes using the Spearman rank correlation
test. We use a cut-off value for ρ of 0.7 [36]. After the correlation process,
the “percentage of low ratings” attribute and the “average release rating” at-
tribute are highly correlated (ρ = 0.78). The “release count” attribute and
the “release frequency” attribute are highly correlated (ρ = 0.71). Hence, the
“percentage of low ratings” attribute and the “release frequency” attribute are
removed from our attributes.

Table 9: The collected attributes for each app.

Attribute Values Description (D) - Rationale (R)

App metadata attributes

App
category

Categorical D: Category of the studied app (i.e., either Game
or non-Game app). R: Developers from different
app categories may write release notes differently.

App size Numerical Size of the APK file in MB. R: Developers from
apps with more functionalities may write more
detailed release notes.

Size of the
user-base

Numerical The number of downloads. R: Developers work-
ing on apps that have a larger user-base may write
more detailed release notes.

Store
Experience

Numerical The total number of apps offered by the owner
of the app. R: App stores with more experience
may write more detailed release notes.

Release practice attributes

An Empirical Study on Release Notes Patterns in the Google Play Store 25

Release
count

Numerical D: The total number of releases for every app
during the studied period. R: Apps with more
releases may write less detailed release notes.

Release
frequency

Numerical D: The median time-to-release for every app. R:
Apps that release more frequently may write less
detailed release notes.

Bug
keywords

Numerical D: The percentage of releases with bug-related
keywords in the release notes text. R: Apps
that write release notes containing “bug-fix” may
write shorter release notes.

Improvement
keywords

Numerical D: The percentage of releases with improvement-
related keywords in the release notes text.
R: Apps that write release notes containing
improvement-related keywords may write shorter
release notes.

Emergency
keywords

Numerical D: The percentage of releases with emergency-
related keywords in the release notes text.
R: Apps that write release notes containing
emergency-related keywords may write shorter re-
lease notes.

Same-day
releases

Numerical D: The percentage of releases that have time-to-
release of a single day. R: Apps that have a large
amount of same-day releases may right shorter
release notes.

Response
rate

Numerical D: The ratio of developer responses to the posted
reviews of an app. R: Apps that frequently re-
spond to users might have more detailed release
notes.

Perceived quality attributes

Average
release rat-
ing

Numerical D: The average star ratings of the deployed re-
leases of an app. R: Developers may tend to write
more detailed release notes after receiving reviews
with a low rating to increase the overall rating of
their app.

Percentage
of low
ratings

Numerical D: The percentage of one and two star ratings for
all the deployed releases of an app. R: Developers
may tend to write more detailed release notes af-
ter receiving reviews with a low rating to increase
the overall rating of their app.

26 Aidan Z.H. Yang et al.

Rating
increase

Categorical D: The difference between the app ratings at the
end of the studied period and the app ratings at
the beginning of the studied period (converted
to Boolean value to reflect the increase/decrease
in the ratings of an app). R: Apps that have an
increase in ratings might have more changes and
more detailed release notes.

Step 2: Constructing the models. We construct six logistic regression mod-
els using the glm package [27]. For model i, we tag all apps with pattern Pi as
1 and apps with other patterns as 0. For each of the six models, the presence
of pattern Pi is the dependent variable, or response class. Since our dependent
variable can only take on the values 0 and 1, we treat the dependent variable
as a binary variable. We use logistic regression models, as logistic regression is
frequently used for models involving binary dependent variables [8, 16,23,34].

Step 3: Analyzing the constructed models. After building the logistic
regression models, we measure the discriminatory power of the constructed
models using the area under the receiver operator characteristic curve (AUC).
AUC is the area under the plot of the true positive rate against the false-
positive rate. An AUC value close to 1 means that our independent variables
have high discriminatory power. More specifically, our logistic regression model
Mi can better determine whether an app is clustered to pattern Pi [21].

To understand the most important attributes in our logistic regression
models and identify the attributes that are most contributing to each release
notes pattern, we use Wald statistics (χ2) to estimate the relative contribution
of each app attribute in the constructed model. The larger the χ2 value, the
larger the impact that a particular attribute has on the performance of the
model (i.e., the AUC value) [31, 44]. We then calculate the percentage of χ2

for each attribute to the total χ2 for all app attributes [18]. We also analyze
the coefficient sign for each app attribute in the generated models. A positive
coefficient sign of an app attribute indicates that the app attribute positively
correlates to our independent variable (e.g., if the app size has a positive coeffi-
cient sign in model 1, then an app with a large app size is more likely to belong
to pattern 1). Similarly, a negative coefficient sign for an app attribute signifies
that the app attribute negatively correlates to our independent variable.
Results: The constructed models for the apps with short updating
release notes have the highest explanatory power. Table 10 shows a
summary of our constructed models. The highest AUC values from the lo-
gistic regression models for pattern 3 (short rising-updatability with major
releases) and pattern 2 (short updating steady) are 0.82 and 0.79 respectively.
Each model has a different attribute with the highest explanatory power. We
describe our analysis of the constructed models in the following discussion.
Model 1 (short non-updating steady). Apps in pattern 1 frequently men-
tion bug keywords (e.g., “Bug fixes”) in the release notes. However, apps in

An Empirical Study on Release Notes Patterns in the Google Play Store 27

Table 10: A summary of the analysis of the constructed six models.

Discriminatory power of the constructed models

Model statistics Model
111

Model 2 Model 3 Model 4 Model 5 Model 6

AUC 0.67 0.79 0.82 0.75 0.77 0.69

Impact of all app attributes on the six models

App
attributes

Percentage of χ2 (Coeff. Sign)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

App category 0.02 (+) 0.05 (-) 0.01 (+) 0.03 (+) 0.01 (+) 0.10 (-)

App size 0.11 (-) 0.14 (-) 0.12 (+) 0.03 (+) 0.02 (+) 0.26 (+)

Size of the
user-base

0 (-) 0.03 (-) 0.30 (-) 0 (+) 0.02 (+) 0.01 (+)

Store Experience 0.02 (-) 0.03 (+) 0 (+) 0.01 (+) 0.02 (+) 0.06 (+)

Release count 0.00 (-) 0.22 (-) 0.06 (-) 0.44 (+) 0.37 (-) 0.00 (-)

Bug keywords 0.27 (+)12 0.10 (+) 0.10 (+) 0.05 (-) 0.05 (-) 0.01 (+)

Improve keywords 0.17 (-) 0.22 (+) 0.01 (+) 0.13 (+) 0.01 (-) 0.01 (+)

Emergency
keywords

0.21 (-) 0.06 (+) 0.05 (-) 0.02 (+) 0.01 (+) 0.06 (+)

Same-day releases 0.00 (+) 0.10 (+) 0.02 (+) 0.19 (+) 0.02 (-) 0.08 (-)

Response frequency 0.14 (-) 0.03 (-) 0.03 (+) 0.01 (+) 0.20 (+) 0.22 (+)

Average
release rating

0.03 (-) 0.01 (-) 0.08 (-) 0.17 (+) 0.11 (+) 0.04 (+)

Rating increase 0.01 (-) 0.03 (+) 0.20 (-) 0.01 (+) 0.17 (+) 0.15 (+)

pattern 1 infrequently use emergency keywords (e.g., “Emergency update due
to crash”) or improve keywords (e.g., “UI improvements”) in the release notes.
Developers of the apps in pattern 1 infrequently respond to user reviews. Apps
in pattern 1 negatively correlate to average release ratings, meaning that apps
that use short and non-updating release notes tend to have lower average
release ratings than other apps.

In summary, the developers of apps in pattern 1 do not respond to user
reviews and do not clearly mention the addressed issues in the release notes.

Model 2 (short updating steady). Developers of apps in pattern 2 fre-
quently use improve keywords (e.g., “improvement” and “enhancement”) as
developers of these apps describe briefly the newly added attributes (e.g., “Im-
proved the stability of playing video” and “Performance enhancements”). Apps

12Models 1-6 are the models for the patterns 1-6 as follows: (1) short non-updating steady,
(2) short updating steady, (3) short rising-updatability with major releases, (4) long non-
updating steady, (5) long updating steady, and (6) long rising-updatability with major re-
leases.

13The bold text highlights the app attributes with the highest impact on the response
variable.

28 Aidan Z.H. Yang et al.

in pattern 2 generally have a lower release count than the other apps. Similar
to pattern 1, apps in pattern 2 generally have a lower average release rating
than other apps.

Model 3 (short rising-updatability with major releases). Apps in pat-
tern 3 have a low number of downloads and a decrease in release ratings during
the period of the study. The result shows that apps in pattern 3 are negatively
correlated to the rating increase. Based on our manual investigation, we ob-
serve that the frequently updated major release notes mainly describe the
resolved issues in the release. It may indicate the reason for the low average
release rating of the apps in pattern 3 as such apps have frequent issues that
need to be fixed.

Model 4 (long non-updating steady). Apps in pattern 4 generally have
rapid release cycles and frequently deploy same-day releases, unlike apps in
patterns 1, 2, and 3. For such apps, developers write short release notes. Apps
in pattern 4 generally have a high average release rating and an increase in
release ratings over the three-year studied period.

Model 5 (long updating steady). Apps in pattern 5 infrequently deploy
but frequently broadcast the new releases to users. Similar to apps in pattern
4, apps in pattern 5 have high release ratings overall and an increase in release
rating during our studied period.

Model 6 (long rising-updatability with major releases). Apps in pattern
6 generally have a larger APK size and a higher response rate than the other
studied apps. Apps in pattern 6 are less likely to be in the Game category
than apps in the other identified patterns.

The constructed six models show that apps in patterns 4, 5, and 6 with longer
release notes tend to have a higher average release rating than the other studied
apps. Apps in pattern 3 that have short release notes and major varied releases
have a decrease in user ratings during our studied period.

The apps in pattern 5 with long and updating release notes have both
high average release rating and a rating increase during our studied period.
Hence, store owners can notify users with apps in pattern 5 as such apps have
high perceived quality releases and descriptive release notes that contain more
comprehensive content.

Apps in pattern 6 tend to have the highest response rate. As responding
to use reviews results in a positive change in review ratings [18], we suggest
that developers with apps in pattern 6 can leverage release notes content to
automatically respond to user reviews by notifying users who are impacted by
the changes in the new release.

Furthermore, we observe that apps under the “Games” category are nega-
tively correlated with release notes in patterns 2 and 6. Therefore, our model
suggests that it is less likely for “Game” category apps to contain updating
release note patterns.

An Empirical Study on Release Notes Patterns in the Google Play Store 29

Summary

Apps in patterns 2 and 5 with updating release notes tend to have
a lower number of releases. Apps in pattern 6 that have long, rising-
updatability release notes with major releases tend to have a higher user
response rate than other apps. Apps in pattern 5 that have long and
updating release notes have higher perceived quality releases compared
to other apps.

RQ3: What causes developers to shift their release notes pattern?

Motivation: During the evolution of mobile apps, we observe that the de-
velopers might change their practices in writing their release notes. We are
interested in finding whether the release note shifts are driven by the attempt
to improve star ratings and if the shifts have any positive effects on the per-
ceived app quality. In this RQ, we identify pattern shifts that are associated
with an increase in the app ratings. Identifying such shifts can help devel-
opers understand how to adapt their release notes patterns to improve their
communication with their app users.
Approach: For all the studied apps, we treat each of the clustering metrics
(e.g., length and updatability) as a time series. In particular, we treat every
new release as a change in time. We then use the mean and variance value of
each time series to determine whether the time series of the clustering metrics
is stationary. For a stationary time series, the mean value of time series is
constant over time implying that the trend component is nullified, and the
variance does not increase over time implying that the seasonality effect is
minimal [7]. We use a stationary p-value threshold of 0.05, where a time series
above the threshold is non-stationary [41]. When any of the clustering metrics
change significantly for the time series of an app, we define the changing release
as a metric shift and identify the time series as non-stationary.

To analyze the association of the shift in release notes patterns on app
ratings, we measure the average rating of each non-stationary app (i.e., pattern
shifting app) after the shift and compare it to the average rating of the app
before the shift. Finally, the first two authors of this paper manually analyze
all non-stationary apps to gain further insights on what developers mention in
the release notes after changing their release patterns. We calculate a Cohen’s
Kappa value of 0.89 for the inter-rater agreement [9].

Results: We find 69 apps that are non-stationary on at least one of the clus-
tering metrics. After manually examining each of the 69 non-stationary apps,
we observe that 53 consistently shift patterns. The 16 excluded apps either
have an insignificant metric shift, or have a metric shift that continues for two
to three releases, and then return to the previous metric patterns. To deter-
mine the reasons behind each shift, we then read the release notes of the 53
non-stationary apps and identify their release notes style before and after the
shift. Figure 8 shows the summary of all identified pattern shifts.

30 Aidan Z.H. Yang et al.

Initial Patterns

Pattern 1
Short Non-updating

Steady

Shifted Patterns

Pattern 3
Short Updating

Steady

3

1

3

2

9

6

11

18

Short to Long

Others

Rarely updated to
frequently
updated

Number of
Occurences

Pattern 4
Long Non-updating

Steady

Pattern 1
Short Non-updating

Steady

Pattern 6
Long Rising-

updatability with
Major Releases

Pattern 5
Long Updating

Steady

Pattern 4
Long Non-updating

Steady

Pattern 5
Long Updating

Steady

Pattern 5
Long Updating

Steady

Pattern 1
Short Non-updating

Steady

Pattern 4
Long Non-updating

Steady

Pattern 2
Short Updating

Steady

Fig. 8: A summary of pattern shifts

92% of the studied apps shift either from short to long release
notes or from rarely updated to frequently updated release notes. Of
the 53 apps that display a shift in release patterns, 49 (92%) shift from short
to long (31 apps) and from rarely updated to frequently updated (18 apps).
The results show that when apps shift patterns, developers tend to add more
details to non-updating release notes. We observe infrequent shifts involving
patterns 3 (short rising-updatability with major releases) and 6 (long rising-
updatability with major releases). It indicates that developers implementing
apps in rising-updatability patterns do not frequently shift their release notes
behavior.

Developers shift their release notes patterns to provide detailed
guidance to their users and spot the importance of the new release.
Through manual analysis of the apps with shifts of release note patterns,
we identify seven main reasons for developers to change their release notes
patterns. As outlined in Table 11, 33% of the identified pattern shifts are
because of a shift from functional updates to provide detailed user guides on

An Empirical Study on Release Notes Patterns in the Google Play Store 31

Table 11: The identified reasons for pattern shifts in the studied release notes.

Number Event Occurrences

1 Listing functional updates to providing user guidance (e.g., “To
access the newly updated profile settings, please go to ...”)

18

2 Negative user feedback (e.g., “Thank you for your feedback which
enabled us to address the issue of: ...”)

10

3 Crash fixes (e.g., “Crash emergency update!”) 7

4 UI-related changes (e.g., “Changed color for the app border”) 6

5 Standard/professional release notes to joke release notes (e.g.,
“We squashed some cute bugs!” or “Swat swat, go away pesky bugs!”)

5

6 Changes in the Google Play Store service libraries (e.g., “Updated
Google Play Store service libraries due to ...”)

4

7 Holiday events (e.g., “Christmas Update: ...”) 4

how to use the new features. An example of a functional update is “Sign
in with Fingerprint - Added PDF support for invoices - Bug Fixes- UI/UX
improvements”.

Moreover, developers change their release notes patterns due to negative
user feedback (19%) and crashes (13%). The obtained results indicate that
developers use the release notes to spot the importance of the new release to
the user-base (e.g., “Crash emergency update!”).

Apps receive higher ratings after shifting from rarely updated to
frequently updated release notes. We study the changes in average ratings
for the most frequent pattern shifts. Of the apps that shift from pattern 1 to
pattern 5, 94% show a higher average rating after the shift. 78% of the apps
that shift from pattern 4 to pattern 5 show a higher average rating after the
shift. All three apps that shift from pattern 5 to pattern 1, namely the “Fifth
Third Mobile Banking” app, the “News 12” app, and the “NYC Subway Map”
app, show a decrease in the average release rating. The obtained results show
that an increase in user ratings correlates to a shift from either short to long
release notes or from rarely updated to frequently updated release notes. We
perform the Wilcoxon rank-sum statistical test [10] between the ratings before
shifts and ratings after shifts. As the p-value turns out to be 4.78e-05, which is
less than the 0.05 significance level, we reject the null hypothesis and conclude
that we observe a significant difference in user ratings from either short to long
release notes or from rarely updated to frequently updated release notes.

Table 12 shows an example of release notes from three apps to demonstrate
a release notes pattern shift. As listed in Table 12, apps shifting from short
to long release notes and from rarely updated to frequently updated release
notes receive higher release ratings. Examples of this shift are the “Airbnb”
app and the “AVG Anti-Virus” app. Furthermore, apps shifting from long
to short release notes and from frequently updated to rarely updated release
notes tend to receive lower ratings.

32 Aidan Z.H. Yang et al.

Table 12: Examples of release notes shifts.

Pattern
shift

Version
string

Release
type

Release notes

Example release notes of the “Airbnb” app. The app ratings increased from 4.30 to
4.33 after the shift.

P1 to P5
(short
non-updating
to long
updating)

16.44.1 minor “Bug fixes and performance improvements.”

16.45.2 minor “Bug fixes and performance improvements.”

16.46.0 minor “Bug fixes and performance improvements.”

16.47.3 minor “Introducing the new Airbnb. Now you’ve got homes
experiences and places all in one app...”

16.48.1 minor “This holiday give the gift of travel. Now you can
send Airbnb gift cards right from our app. Introduc-
ing the new Airbnb ...”

Example release notes of the “AVG Anti-Virus” app. The app ratings increased from
4.48 to 4.52 after the shift.

P4 to P5
(long
non-updating
to long
updating)

16.44.1 minor “Enhancements and bug fixes on ...”

16.45.0 minor “Enhancements and bug fixes ...”

16.46.3 minor “Delivering our new GDPR-focused data privacy and
security benefits to all of our users worldwide ...”

16.47.1 minor “Improved efficiency of Web Shield. Faster checking
of URLs and fixed the occasional error...”

Example release notes of the “NYC Subway Map” app. The app ratings decreased
from 4.58 to 4.35 after the shift.

P5 to P1
(long
updating
to short
non-updating)

3.1.0 minor “You can now view the scheduled train arrival times!
Stability improvements ...”

3.1.1 patch “You can zoom in farther! You can now view the
scheduled train arrival times! ...”

3.1.3 patch “Remove unnecessary permissions”

4.0.1 major “All new! The sharpest map out there ...”

4.0.3 patch “All new! The sharpest map out there ...”

Summary

Pattern shifts mainly occur when developers shift from short to long
release notes, and rarely updated to frequently updated release notes.
We identify seven reasons for the shifts, such as a shift from listing
functional updates to providing user guidance, addressing negative user
reviews, and resolving crash issues. We observe that an increase in user
ratings correlates to a shift from either short to long release notes or
from rarely updated to frequently updated release notes.

An Empirical Study on Release Notes Patterns in the Google Play Store 33

5 Implications

In this section, we discuss the implication of our results for app developers,
store owners, and researchers.
Implications for app developers. In RQ1, we observe that developers in
pattern 5 and 6 use release notes to inform their users about the changes in the
new release. For example, 8% of analyzed release notes of pattern 5 provide
support for app users. Prior studies proposed approaches to automatically
generate the release notes [32]. The automatically generated release notes can
help app users understand the introduced changes in the new releases. Hence,
we recommend that developers of pattern 5 can leverage the existing tools to
automatically generate informative release notes.”

In the conducted survey, we observe that 90% of the 102 survey partici-
pants agree that it is useful to notify their user base about app updates. We
identify a taxonomy of 17 drivers mentioned in the release notes. Hence, de-
velopers in patterns 1 and 4 (i.e., developers who do not update their release
notes) can benefit from the provided taxonomy to improve the documented
information in their release notes. For example, developers of patterns 1 and 4
can mention details about the improved features or the fixed issues (e.g., fixing
the performance and the resources utilization issues) in their release notes.

Finally, we find that app developers notify users individually (i.e., respond-
ing to the posted reviews) with the new updates written in the release notes.
Prior work proposed approaches for the automatic generation of developer re-
sponses [12,13]. Developers of patterns 5 and 6 (i.e., patterns with the highest
response rate to app users) can use the existing response generation tools to re-
spond to user reviews and inform users about the changes in the new releases.
For example, as shown in Table 8, developers of the “Staples” app addressed
the negative user review in their release notes. In addition, developers incor-
porated both the user reviews and the release notes in the response messages.
For specific user issues, the developer response should be tailored for the user.
For general issues (i.e., a commonly occurring bug in the latest update), our
study suggests that high quality release notes can be used to help developers
broadcast their responses to their user base. From our conducted survey, we
also observe that 83% of the participants agree that release notes can be used
to respond to user reviews.
Implication for store owners. As discussed in RQ2, apps in pattern 5 gener-
ally perceive a higher average release rating than other apps. Apps in patterns
5 also show an increase in rating during our studied period and frequently
respond to user reviews. Prior work finds that a high developer response rate
to user concerns correlates to higher review ratings [18]. Hence, store owners
can recommend users the apps that have: (1) release notes that are more fre-
quently updated, (2) releases with higher perceived quality, and (3) a higher
user response rate than other apps. Based on our analysis, we find that apps
in pattern 5 are the only apps that follow all three criteria.
Implications for researchers. Software engineering research can benefit
from our work to be careful when using release notes as an artifact that reflects

34 Aidan Z.H. Yang et al.

the changes in the latest release (i.e, release log). As discussed in RQ2, the
most common patterns for our studied apps are the non-updating patterns.
For example, using the current text in the release notes may not indicate the
actual changes in the release, as we find that 49% of the releases use the
previously mentioned release notes. We also noted that long repetitive release
notes (i.e., pattern 4) mainly contain “advertisement” and “non-informative”
release drivers. Hence, researchers should include other resources in tracking
the changes in a new release. For example, researchers can investigate the code
commits for every release. As not all apps are open source apps, it opens a
challenge for researchers to provide tools and approaches that can analyze the
deployed releases (i.e., APKs) without depending on the release notes.

6 Threats to validity

6.1 Construct validity

Construct threats to validity are concerned with the degree to which our anal-
yses measure what we claim to analyze. Throughout our study, we filter out
the first release note of each app as we cannot measure their cosine similarity
to the previous release notes and time-to-release. The excluded release notes
could contain useful information that we discard. To mitigate this effect, we
try to study a long period for each app, which is from April 2016 to April
2019. Our study includes a median of 30.8 releases per app.

In RQ3, we use Stationary analysis on time-series data. The automatic
identification of the pattern shifts using the Stationary time-series analysis
can lead to false-positive cases. Hence, we performed a manual analysis for the
identified 69 apps and read their release notes to understand why their shift
occurred.

6.2 Internal validity

Internal threats to validity are concerned with the relationships between our
dependent variables and independent variables. The dependent variables are
if an app is clustered into pattern Pi, for i ∈ {1, 2, ..., 6}, and our independent
variables are the app attributes. We select app attributes that cover a wide
range of characteristics and would likely be linked to the writing styles of
release notes. However, our selection may not be exhaustive. For example, we
were unable to extract data from individual developers of each app, such as the
coding experience of the developers. Developer information (e.g., developers’
experience) could have a high impact on the style of release notes they write.
Hence, further studies can analyze the other factors that may be correlated
to the characteristics of release notes by analyzing the characteristics of the
releases in open source apps (e.g., F-Droid apps).

An Empirical Study on Release Notes Patterns in the Google Play Store 35

6.3 External validity

External threats to validity are concerned with our ability to generalize our
results. Our study focuses on analyzing the 2,232 apps in the Google Play
Store over a period of three years. Furthermore, our study focuses on the
2,232 apps that are the most popular in the Google Play Store. Our findings
may not hold for non-popular apps. To eliminate the bias in our results, we
select apps across all the app categories in the Google Play Store. Further
studies should investigate more apps in a more extended period to understand
how our findings apply to other types of apps, such as iOS apps and non-free
apps.

We assume throughout this paper that the posted release notes are written
by app developers. We were not able to collect information on the structure of
the teams that built the studied apps. We observe from Clutch13, a company
that lists 2,532 mobile app development firms, that 1,732 out of 2,532 (68%)
of the app development firms have less than 50 employees. Hence, while we
do not have strong evidence that responses were written by actual software
developers, we do have evidence that most mobile app development firms are
small. Due to the small team size, it is likely that responses to reviews are
posted either by app developers themselves or by other team members who
are in close contact with the app developers. Future studies should investigate
further the team size and structure of mobile app development teams and their
impact on the release notes patterns of mobile apps.

7 Related work

In this section, we discuss the related work concerning the empirical studies on
release notes, automatic generation of release notes, and emergency releases.

7.1 Empirical study of release notes

Abebe et al. [2] manually analyzed 85 releases notes across 15 software systems.
Abebe et al. identified six types of information (e.g., addressed issues) in release
notes, and observe that most release notes list only a subset of addressed issues.
Abebe et al. built machine learning models to automatically suggest the issues
that need to be listed in the release notes. Abebe et al.’s approach achieves an
average precision of 84% and an average recall of 90%.

Martin et al. [28] performed a causal analysis between the release notes
and the app ratings. Martin et al. found that the content of the release notes
has an impact on user ratings.

Noei et al. [37] studied 4,193,549 user-reviews of 623 apps in the Google
Play store. Noei et al. identified the key topics in every app category. For
example, Noei et al. identified the most frequently mentioned topics in the

13https://clutch.co/

https://clutch.co/

36 Aidan Z.H. Yang et al.

reviews of every app category, and then measured the similarity between the
release notes and the identified key topics. Noei et al. found that the release
notes of the highly rated releases have significant correlation with the key
topics of the category of this app. McIlroy et al. [29] studied the frequency
of releases of 10,713 mobile apps in the Google Play Store for two months.
McIlroy et al. found that 45% of the frequently-updated apps do not provide
any information on the rationale of new releases.

Ahasanuzzaman et al. [3] manually analyze the release notes of 163 releases
of 8 ad libraries. Ahasanuzzaman et al. observed that fixing issues that are
related to displaying video ads is the main driver for releasing new versions.
From our manual analysis, we observe that Google Play Store app release notes
do not only describe general app updates (e.g., “fix bugs”), but also describe
app specific updates (e.g., “fixed the audio playback issue”). Recently, Bi et
al. [6] analyzed 32,425 release notes in 1,000 GitHub projects, and found eight
categories of information provided in the release notes. Our work is the first
to analyze the evolution of release notes and identify the shifts between each
release note patterns.

Our paper empirically studies how developers leverage release notes in
terms of how descriptive and updating release notes are. We group different
release notes styles into six patterns and identify the patterns that tend to
have higher ratings. Based on manual analysis, we show that the six patterns
contain different release note drivers. Our work is useful for researchers to
further study how different release notes correlate to high perceived quality of
apps.

7.2 Automatic generation of release notes

Moreno et al. [32] manually analyzed 1,000 release notes from 58 software
projects and classified the content of release notes into 17 types, such as fixed
bugs, new features, or changes to documentation. Moreno et al. then intro-
duced an approach that can automatically generate release notes. Based on
their previous work on the generation of release notes [32], Moreno et al. [33]
performed more qualitative studies on the perceived quality of their release
notes generation technique and find an accuracy of 86% for their approach.

Yuan et al. [46] performed a case study on the Android Open Source
projects to predict and detect features that need to be included in release
notes. Yuan et al. used word2vec to represent commit messages and release
notes as lower-dimensional vectors. Yuan et al. used K Nearest Neighbors to
cluster these vectors into groups, each of which represents a feature (e.g.,
network connection, build system). The work then proposes to include the
features with big change difference compared to the previous version in the
release notes, and achieves 13.83% to 17.69% improvements compared to the
state-of-the-art prediction techniques.

Khalfallah et al. [22] proposed an approach to generate release notes for
satellite projects. Khalfallah et al. first summarized the patterns in the release

An Empirical Study on Release Notes Patterns in the Google Play Store 37

notes written by architects, and then used the identified patterns to generate
release notes based on the source code changes in the newly released versions.
Klepper et al. [24] proposed a semi-automated approach for collecting infor-
mation from the issue tracker, build server, and version control systems and
generating release notes based on the collected information. The information
contained in the release notes can be customized for a different audience, such
as user, customer, and team member.

Our study shows that app developers in some cases write long and descrip-
tive release notes in patterns 5 and 6. Therefore, developers of such apps can
leverage the existing release notes to write long and descriptive responses to
users.

7.3 Emergency releases

Wang et al. [45] performed an empirical study on app changelogs from the
developers’ perspective. Wang et al. analyzed changelogs in terms of func-
tional and non-functional requirements, and found that the majority of the
app changes refer to non-functional requirements. Gao et al. [11] proposed an
approach to identify emerging issues from app reviews. Gao et al. found that
the release notes from six popular apps on the Google Play Store and Apple
App Store address the identified emerging topics.

Hassan et al. [20] analyzed the emergency releases of the top 10,000 mobile
apps in the Google Play Store. Hassan et al. found that 70% of the release notes
of the emergency releases are repetitive and generic releases notes. Hassan et
al. [18] analyzed the release notes in 250 bad releases of 2,526 top free-to-
download apps in the Google Play Store. Hassan et al. found that 63.4% of
the cases developers fix the reported issues without updating the release notes
or mentioning details about the fixed issues.

Our work differs from prior studies as we are the first work that performs
an in-depth analysis of release notes. In particular, we analyze 58,069 releases
and over 67 million reviews of 1,712 apps. Our work shows that app developers
write release notes to show the emergency nature of the deployed releases. For
example, we find that apps in pattern 6 frequently mention the “emergency”
keyword when they describe the newly emerging features in their releases. In
addition, we observe a high correlation (44% χ2) between the release count
feature and apps belonging to pattern 4. The obtained results show that apps
with long and non-updating release notes tend to release more frequently than
apps in other release note patterns.

8 Conclusions

App release notes are important artifacts for both app users and app develop-
ers. In particular, developers use release notes to provide details on the updated
functionalities of the newly deployed releases. However, little is known about

38 Aidan Z.H. Yang et al.

the release notes practice in mobile apps and how app developers leverage the
release notes of their apps. In this paper, we perform an in-depth analysis of
release notes practice in the Google Play Store. In particular, we study 69,851
releases and 67.7 million user reviews for 2,232 top free popular apps in the
Google Play Store. The most important findings of our study are:

1. App developers have different release notes practice concerning the length
and updatability of the release notes content. However, the majority of
app developers tend to reuse their prior release notes when they update
the release notes of their apps.

2. We identify six patterns of release notes. App developers dominantly use
rarely updated release notes practice to write release notes. We observe
that rarely updated release notes of apps in patterns 1 and 4 tend to repeat
words bug and improvements while frequently updated release notes tend
to address user reviews and use the keyword emergency.

3. We observe that apps in pattern 5 have high perceived quality releases, an
increase in user ratings, and informative release notes. We also find that
apps in pattern 6 have high perceived quality releases, informative release
notes, and high response rates in their major releases.

4. Pattern shifts mainly occur when developers shift from short to long, and
rarely updated to frequently updated release notes. We observe that an
increase in user ratings correlate to a shift from short to long and rarely
updated to frequently updated release notes.

Our work is the first step towards an in-depth analysis of the release notes
practice in the Google Play Store. Our approach can help store owners notify
users with apps that have descriptive release notes and high perceived quality
in their deployed releases, such as apps in patterns 5 and 6. In addition, our
work shows potential directions for developers to improve the release notes
mechanisms in app stores. Future work can perform further study on iOS
apps or paid apps on the Google Play Store.

References

1. App annie - the app analytics and app data industry standard. https://www.appannie.
com/. Accessed: 2019-08-30.

2. S. L. Abebe, N. Ali, and A. E. Hassan. An empirical study of software release notes.
Empirical Software Engineering, 21(3):1107–1142, 2016.

3. M. Ahasanuzzaman, S. Hassan, C.-P. Bezemer, and A. E. Hassan. A longitudinal
study of popular ad libraries in the google play store. Empirical Software Engineering,
25(1):824–858, 2020.

4. Akdeniz. Google Play Crawler. https://github.com/Akdeniz/google-play-crawler,
Feb 2014. Accessed: 2019-09-30.

5. Appcues. 5 excellent product release note examples and how to write your own. https:
//www.appcues.com/blog/release-notes-examples. Accessed: 2020-01-23.

6. T. Bi, X. Xia, D. Lo, J. Grundy, and T. Zimmermann. An empirical study of release
note production and usage in practice. IEEE Transactions on Software Engineering,
2020.

7. P. J. Brockwell, R. A. Davis, and M. V. Calder. Introduction to time series and fore-
casting, volume 2. Springer, 2002.

https://www.appannie.com/
https://www.appannie.com/
https://github.com/Akdeniz/google-play-crawler
https://www.appcues.com/blog/release-notes-examples
https://www.appcues.com/blog/release-notes-examples

An Empirical Study on Release Notes Patterns in the Google Play Store 39

8. A. E. Camargo Cruz and K. Ochimizu. Towards logistic regression models for predicting
fault-prone code across software projects. In Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, pages 460–463. IEEE
Computer Society, 2009.

9. J. Cohen. A coefficient of agreement for nominal scales. Educational and psychological
measurement, 20(1):37–46, 1960.

10. J. Cuzick. A wilcoxon-type test for trend. Statistics in medicine, 4(1):87–90, 1985.
11. C. Gao, J. Zeng, M. R. Lyu, and I. King. Online app review analysis for identify-

ing emerging issues. In 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE), pages 48–58. IEEE, 2018.

12. C. Gao, J. Zeng, X. Xia, D. Lo, M. R. Lyu, and I. King. Automating app review response
generation. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 163–175. IEEE, 2019.

13. C. Gao, W. Zhou, X. Xia, D. Lo, Q. Xie, and M. R. Lyu. Automating app review
response generation based on contextual knowledge. arXiv preprint arXiv:2010.06301,
2020.

14. Y. Goldberg and O. Levy. word2vec explained: deriving mikolov et al.’s negative-
sampling word-embedding method. arXiv preprint arXiv:1402.3722, 2014.

15. Google. Prepare & roll out releases - play console help. https://support.google.com/
googleplay/android-developer/answer/7159011?hl=en. Accessed: 2020-01-23.

16. T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation of object-oriented metrics on
open source software for fault prediction. IEEE Transactions on Software engineering,
31(10):897–910, 2005.

17. J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering algorithm.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108,
1979.

18. Hassan, C. Tantithamthavorn, C.-P. Bezemer, and A. E. Hassan. Studying the dialogue
between users and developers of free apps in the Google Play Store. Empirical Software
Engineering, 23(3):1275–1312, 2018.

19. S. Hassan, C.-P. Bezemer, and A. E. Hassan. Studying bad updates of top free-to-
download apps in the google play store. IEEE Transactions on Software Engineering,
2018.

20. S. Hassan, W. Shang, and A. E. Hassan. An empirical study of emergency updates for
top Android mobile apps. Empirical Software Engineering, 22(1):505–546, 2017.

21. J. Huang and C. X. Ling. Using auc and accuracy in evaluating learning algorithms.
IEEE Transactions on knowledge and Data Engineering, 17(3):299–310, 2005.

22. M. Khalfallah. Generation and visualization of release notes for systems engineering
software. In Proceedings of the International Conference on Complex Systems Design
& Management, pages 133–144. Springer, 2018.

23. T. M. Khoshgoftaar and E. B. Allen. Logistic regression modeling of software quality.
International Journal of Reliability, Quality and Safety Engineering, 6(04):303–317,
1999.

24. S. Klepper, S. Krusche, and B. Bruegge. Semi-automatic generation of audience-specific
release notes. In Proceedings of the 2016 IEEE/ACM International Workshop on Con-
tinuous Software Evolution and Delivery (CSED), pages 19–22. IEEE, 2016.

25. J. R. Landis and G. G. Koch. The measurement of observer agreement for categorical
data. biometrics, pages 159–174, 1977.

26. C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky. The
stanford corenlp natural language processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguistics: system demonstrations, pages
55–60, 2014.

27. I. Marschner, M. W. Donoghoe, and M. M. W. Donoghoe. Package ‘glm2’. Journal,
Vol, 3(2):12–15, 2018.

28. W. Martin, F. Sarro, and M. Harman. Causal impact analysis for app releases in Google
Play. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 435–446. ACM, 2016.

29. S. McIlroy, N. Ali, and A. E. Hassan. Fresh apps: an empirical study of frequently-
updated mobile apps in the google play store. Empirical Software Engineering,

https://support.google.com/googleplay/android-developer/answer/7159011?hl=en
https://support.google.com/googleplay/android-developer/answer/7159011?hl=en

40 Aidan Z.H. Yang et al.

21(3):1346–1370, 2016.
30. X.-L. Meng, R. Rosenthal, and D. B. Rubin. Comparing correlated correlation coeffi-

cients. Psychological bulletin, 111(1):172, 1992.
31. D. S. Moore. Generalized inverses, wald’s method, and the construction of chi-squared

tests of fit. Journal of the American Statistical Association, 72(357):131–137, 1977.
32. L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and G. Canfora. Automatic

generation of release notes. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 484–495. ACM, 2014.

33. L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and G. Canfora. Arena: an
approach for the automated generation of release notes. IEEE Transactions on Software
Engineering, 43(2):106–127, 2016.

34. N. Nagappan, B. Murphy, and V. Basili. The influence of organizational structure on
software quality. In Proceedings of the 2008 ACM/IEEE 30th International Conference
on Software Engineering, pages 521–530. IEEE, 2008.

35. E. Noei, D. A. Da Costa, and Y. Zou. Winning the app production rally. In Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 283–294. ACM,
2018.

36. E. Noei, M. D. Syer, Y. Zou, A. E. Hassan, and I. Keivanloo. A study of the relation
of mobile device attributes with the user-perceived quality of Android apps. Empirical
Software Engineering, 22(6):3088–3116, 2017.

37. E. Noei, F. Zhang, and Y. Zou. Too many user-reviews, what should app developers
look at first? IEEE Transactions on Software Engineering, 2019.

38. J. Plisson, N. Lavrac, D. Mladenic, et al. A rule based approach to word lemmatization.
Proceedings of IS-2004, pages 83–86, 2004.

39. T. Preston-Werner. Semantic versioning 2.0.0. https://spectrum.ieee.org/tech-

talk/telecom/internet/the-art-of-writing-app-release-notes. Accessed: 2019-
08-30.

40. P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of computational and applied mathematics, 20:53–65, 1987.

41. F. Sowell. Maximum likelihood estimation of stationary univariate fractionally inte-
grated time series models. Journal of econometrics, 53(1-3):165–188, 1992.

42. Statista. Average number of new Android app releases per day from 3rd quarter
2016 to 1st quarter 2018. https://www.statista.com/statistics/276703/android-

app-releases-worldwide/. Accessed: 2020-01-23.
43. R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a data

set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 63(2):411–423, 2001.

44. H. Y. Toda and T. Yamamoto. Statistical inference in vector autoregressions with
possibly integrated processes. Journal of econometrics, 66(1-2):225–250, 1995.

45. C. Wang, J. Li, P. Liang, M. Daneva, and M. Sinderen. Developers’ eyes on the changes
of apps: An exploratory study on app changelogs. In 2019 IEEE 27th International
Requirements Engineering Conference Workshops (REW), pages 207–212. IEEE, 2019.

46. W. Yuan, Z. Feng, S. Chen, K. Huang, and J. Yao. What biscuits to put in the basket?
features prediction in release management for Android system. In Proceedings of the
2017 IEEE International Conference on Web Services (ICWS), pages 73–80. IEEE,
2017.

 https://spectrum.ieee.org/tech-talk/telecom/internet/the-art-of-writing-app-release-notes
 https://spectrum.ieee.org/tech-talk/telecom/internet/the-art-of-writing-app-release-notes
https://www.statista.com/statistics/276703/android-app-releases-worldwide/
https://www.statista.com/statistics/276703/android-app-releases-worldwide/

41

Appendices

Table 13: List of refined bug-related, improvement-related, and emergency-
related keywords for identifying release notes that resolve bugs, introduce new
features, and provide emergency updates to the app.

Keyword type Keywords

Improvement-related keywords improve, improved, improvements, enhance,
enhances,
update, updates, add, optimize

Bug-related keywords bug, bugs, fix, fixes, workaround, solve, re-
solved,
problem, error, defect, incorrect, incorrectly,
issue,
issues, crash

Bug-related keywords emergency, emergencies, urgent

Table 14: List of defined questions in the conducted survey

Questions Possible answers

Q1.1 What is your age? “Less than 25 years old”, “26-35 years old”,
“36-45 years old”, “Above 46 years old”, and
“Prefer not to answer”

Q1.2 How many years of work experience do
you have?

“1 or less”, “2-5 years”, “6-10 years”, “11-20
years”, and “More than 21 years”

Q1.3 How many years of work experience in
the field of mobile development do you have?

“1 or less”, “2-5 years”, “6-10 years”, and
“11+ years”

Q1.4 What are your roles in the development
of mobile apps? Please select all that apply.

“Development”, “Testing and quality assur-
ance”, “Release management”, “Configura-
tion management”, “Product support”, “Pro-
ject/product management”, “Other”

Q1.5 How many mobile apps have you devel-
oped (including the current one)

“None”, “1”, “2-5”, “6-10”, and “11+”

Q1.6 Which of the following industries best
describe the category of your app? Please se-
lect all that apply.

“Weather”, “Bible”, “Browser”, “Naviga-
tion”, “Free Call”, “SMS”, “Music player”,
“News”, “Security”, “Wallpaper”, “Taxi
and rideshare”, “Dating”, “Recipe cooking”,
“Coloring”, “Pregnancy”, “Sports news”,
“Video editor”, “Notes”, “Mobile banking
apps”, “Accommodation booking”, “Games”,
“Other”

Q2.1 How frequently do you update your app
release notes?

“Very frequently”, “Often”, “Sometimes”,
“Rarely”, and “Never”

Q2.2 Do you agree or disagree with the follow-
ing statement: it is useful to notify the user-
base about new updates in your app.

“Strongly agree”, “Agree”, “Neither agree
nor disagree”, “Disagree”, and “Strongly dis-
agree”

Q2.3 Do you agree or disagree with the fol-
lowing statement: release notes can be used
to respond to user reviews.

“Strongly agree”, “Agree”, “Neither agree
nor disagree”, “Disagree”, and “Strongly dis-
agree”

Q2.4 Do you agree or disagree with the follow-
ing statement: it would be useful to have a tool
that automatically generates release notes for
you.

“Strongly agree”, “Agree”, “Neither agree
nor disagree”, “Disagree”, and “Strongly dis-
agree”

	1 Introduction
	2 Motivational Study
	3 Experimental Setup
	4 Results
	5 Implications
	6 Threats to validity
	7 Related work
	8 Conclusions
	Appendices

