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Abstract

The manual refactoring between APIs is a tedious and error-
prone task. We introduce Synthesis for Open-Source API
Refactoring (SOAR), a novel technique that requires no train-
ing data to achieve API migration and refactoring. SOAR
relies only on the documentation that is readily available
at the release of the library to learn API representations
and mapping between libraries. Using program synthesis,
SOAR automatically computes the correct configuration of
arguments to the APIs and any glue code that is required to
invoke those APIs.

CCS Concepts: « Software and its engineering — Auto-
matic programming.
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1 Introduction

Modern software development makes heavy use of libraries,
frameworks, and associated application programming inter-
faces (APIs). The APIs used by the software can become
invalid or inapplicable as the software evolves. APIs them-
selves may become deprecated or obsolete [1]. As a result,
to maintain and optimize software that depends on APIs,
developers often have to refactor APIs between different
versions, or to another API (i.e., API migration) altogether.
Manual migration between APIs is tedious and error prone.
Migration can be difficult even when migrating between
two closely-related APIs that nominally provide the same
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functionality. For example, consider increasingly popular
data science and deep learning libraries, such as TensorFlow
[2], PyTorch [3], and Numpy [4]. Moving between two such
libraries often requires significant manual labor as well as
domain and library-specific knowledge.

In this work, we present SOAR (Synthesis for Open-source
API Refactoring), a novel technique that requires no training
data to achieve API migration and refactoring. We focus our
approach and evaluation on deep learning and data science
APIs. However, we believe the approach will generalize to
other APIs with similar properties. Given a program that
uses a given source API, SOAR’s central proposition is to
use NLP models learned over available API documentation
and error messages to inform program synthesis to replace
all source API calls with corresponding calls taken from the
target APL

2 Methodology

Figure 1 shows an overview of our approach. SOAR refactors
a program from one DL API to another through a pipeline of
three main models. We describe the models in the following.

API matching: The first step in migrating a call in a
source API is to identify candidate replacement calls in the
target API with similar semantics. The API matching model
embeds each API method call in a source and target library
into the same continuous high-dimensional space, and then
computes similarity between two calls in terms of the dis-
tance between them in that space. Specifically, we use the
GloVe embedding [5], which are models trained on a large
natural language corpus. We train the GloVe model using
API method call names scraped from API documentation. To
obtain sentence embeddings from individual words, we use
a weighting factor to perform a weighted linear combination
of word embeddings, which is shown in detail as Equation 1,
where wj is the GloVe embedding of word x;:
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Given the representation of two APIs Rep(x’), Rep(x/) in
the same space Rep(-), we compute and rank their similarity
with the cosine distance between the representations.

Program synthesis: Our program synthesizer for refac-
toring of APIs is based on two main ideas: (i) program sketch-
ing, and (ii) program enumeration. For each line [ in program
I, we start by enumerating a program sketch (i.e., program
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self.densel = tf.Dense(10) ‘ ‘ torch.to_dense(#0) ‘

AssertionError: “out_features”
must be a positive number.

self.densel = torch.nn.Linear(
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torch.nn.Linear: #1 >0 ‘
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Figure 1. Overview of the SOAR architecture

[ torch.nn.Conv2d(-2,40,(3,3),stride=(1,1),padding=(0,0)) ]

l Compile program and generate error message

[ Trying to create tensor with negative dimension -2: [40, -2, 3, 3] ] «

l Step 1. Collect candidate faulty parameters and fault causes

POS=NN POS =) Target Param

| | |
Trying to create tensor with negative dimension -2: [40, -2, 3, 3]

Hyponym 1

l Step 2. Match candidate faulty parameter with program parameters

['in_channels=-2', 'out_channels=40', 'kernel_size=(3,3)',
‘stride=(1,1)", 'padding=(0,0)']

l Step 3. Mutate program If fail

(selfivars = torch.nn.Conv2d(1,40, (3,3),stride=(1,1),padding=(0,0)) | —

l If pass: generate SMT constraint

[ in_channels >0 ]

Figure 2. Example error message to SMT constraint pipeline
using hyponym 1

with holes) using APIs from the target library 7~ . For each
program sketch, we perform program enumeration on the
possible completion of the API parameters. For each com-
plete program, we run the test cases for the program up to
line [. If all test cases succeed, then we found a correct map-
ping for line [ between the source library S and the target
library 7. Otherwise, we continue until we find a complete
program that passes all test cases.

For each considered API call, we scrape/process the asso-
ciated documentation to extract these properties and encode
them as SMT constraints to further limit the synthesizer
search space. Besides these specification constraints, we can
also further prune the search space by taking advantage of
the error messages provided by the Python interpreter, as
we discuss in the next section.

Error message understanding: We use a combination
of extracting hyponymy relations and Word2vec to under-
stand run-time error messages. As outlined in Figure 2, Our
SMT constraint generation method consists of three steps:

Step 1: Extract hyponymy relation candidates from error
messages. We perform an automatic extraction of customized
hyponyms on each error message. Hyponyms are specific
lexical relations that are expressed in well-known ways [6].

We propose a set of four lexico-syntatic patterns to iden-
tify hyponyms using noun-phrases and regular expressions
frequently appearing in machine learning API error mes-
sages. We elide detailed explanation on the four hyponyms
for space.

Step 2: Identify candidate faulty parameters and constraints.
Step 2 uses different keywords based on the result of step 1
to identify the faulty parameter. As shown in Figure 2, an
error message with hyponym 1 is likely to have the POS=]J
word as a parameter constraint (i.e, word “negative"). Based
on the fault cause candidate, we then store all negative num-
bers as candidate faulty parameters (e.g., [40, -2, 3, 3] has
-2 as the only faulty parameter). Therefore, the example er-
ror message in Figure 2 has only one candidate constraint:
“in_channels >=0".

Step 3: Mutate program. To validate the candidate faulty
parameters and constraints, we mutate each faulty parame-
ter according to each faulty parameter and constraints pair.
We then re-run the program for each mutation. If the pro-
gram passes, or if the error message changes, we store the
faulty parameter and constraint pair as an SMT constraint. As
shown in Figure 2, the API call mutator mutates the second
parameter (“in_channels = —2") to a non-negative number.
The mutator first attempts “in_channels = 0" and it encoun-
ters a different error message. From the new error message,
we mutate this parameter to “in_channels = 1" and observe
no further errors. Therefore, we refine our previous con-
straint to be “in_channels > 0”, and store it as the final SMT
constraint for the program in Figure 2.

3 Results

We collected 20 benchmarks for each of the two migration
tasks (i.e, TensorFlow to PyTorch and dplyr to Pandas). In
particular, for the TensorFlow to PyTorch task, we gathered
20 neural network programs from tensorflow tutorials [7],
off-the-shelf models implemented with TensorFlow [8] or
its model zoo [9]. The outputs from SOAR is guaranteed
to compile and pass existing test cases. SOAR successfully
migrates 16 of the 20 DL models with a mean run-time of
97.23+141.58 seconds, and a median of 14.76 seconds. SOAR
can successfully refactor 18/20 of the benchmark set for data
wrangling tasks in under 102.50 seconds.
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