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Abstract—Behavior Driven Development (BDD) is an agile
approach that uses .feature files to describe the functionalities
of a software system using natural language constructs (English-
like phrases). Because of the English-like structure of .feature
files, BDD specifications become an evolving documentation that
helps all (even non-technical) stakeholders to understand and
contribute to a software project. After specifying a .feature files,
developers can use a BDD tool (e.g., Cucumber) to automatically
generate test cases and implement the code of the specified
functionality. However, maintaining traceability between .feature
files and source code requires human efforts. Therefore, .feature
files can be out-of-date, reducing the advantages of using BDD.
Furthermore, existing research do not attempt to improve the
traceability between .feature files and source code files. In this
paper, we study the co-changes between .feature files and source
code files to improve the traceability between .feature files and
source code files. Due to the English-like syntax of .feature files,
we use natural language processing to identify co-changes, with
an accuracy of 79%. We study the characteristics of BDD co-
changes and build random forest models to predict when a
.feature files should be modified before committing a code change.
The random forest model obtains an AUC of 0.77. The model
can assist developers in identifying when a .feature files should
be modified in code commits. Once the traceability is up-to-date,
BDD developers can write test code more efficiently and keep
the software documentation up-to-date.

Index Terms—Behavior Driven Development, Traceability, Co-
Changes, Empirical Software Engineering

I. INTRODUCTION

To reduce the communication barriers between development
teams and customers, a new form of testing strategy, Behavior
Driven Development (BDD), became more prevalent in recent
years [1]. BDD aims to combine business and technical
interests using a domain-specific language (DSL) that is
similar to the English language. In BDD, the stakeholders
specify scenarios in .feature files to describe functionalities of
software. The scenarios can be described by all stakeholders
of a project due to the simplistic English-like language format
of BDD. The stakeholders can be customers, who have little
to no programming experience, but can still define software
requirements (or understand the logic of an implementation)
using .feature files. Because scenarios serve as a description of

the functionality of a software, it is important to keep scenarios
up-to-date as the functionalities of the software evolves. For
example, when a new developer arrives in a project, having
the .feature files up-to-date would ease the learning curve of
the developer, i.e., the .feature files would capture the most
current functionalities in a friendly and precise manner.

The BDD co-changes occur when a .feature file and its cor-
responding source code files are modified in the same commit,
or over different commits but in a close time span. As a BDD
project scales up, the traceability of these co-changes may
become harder to grasp because the links between .feature files
and their corresponding source code files naturally increase.
An out-of-sync BDD co-change occurs when a .feature file
and its corresponding source code files are modified in sep-
arate commits. The problem of maintaining BDD co-changes
becomes more challenging when new developers enter into the
project because they would have to identify the existing links
between BDD files and source code files.

Existing research establishes the characteristics of BDD by
studying large scale BDD projects in detail. Solı́s et al. [1]
found that ubiquitous language and Iterative Decomposition
Process are key characteristics of BDD. Other research work
discussed the advantages of BDD in circuit design and veri-
fication [2]. Regarding testing strategies, Bhat et al. [3] eval-
uated the efficiency of Test Driven Development (TDD), and
Zaidman et al. [4] explored the traceability of source and test
code. With regards to co-changes, Mcintosh et al. [5] studied
large scale software projects to predict co-changes between
build system changes and source code changes. Although the
characteristics of BDD and the traceability between test code
and source code have been studied, maintaining the traceability
between .feature files and source code remains unexplored.
Maintaining such traceability is important because it keeps
the documentation (i.e., software scenarios) up-to-date, help
developers learn the project faster, and better enforce the
adopted testing strategy. We use an illustrative example in
Section 2 to demonstrate the difficulty in maintaining .feature
files and source code file co-changes.

Our work aims to help developers identify when .feature



files should be modified before committing code. After mining
and analyzing 133 GitHub projects that use BDD, we address
the following three research questions:

• (RQ1) Can we accurately identify co-changes between
.feature files and source code files?
We link .feature files and source code files by measuring
the similarities between English phrases in .feature and
source code. After performing a manual analysis to
evaluate the quality of the established links, we conclude
that we can automatically identify co-changes between
.feature files and source code files with an accuracy of
79%.

• (RQ2) Can we accurately predict when co-changes
between .feature files and source code files are neces-
sary?
To help developers determine the necessity of changing
.feature files before committing source code files, we
identify the characteristics that can predict the modifi-
cation of .feature files within a commit. We use three
classification techniques (random forest, Naive Bayes,
and logistic regression) to predict corresponding .feature
file co-changes when changes in source code are made.
Our random forest, Naive Bayes and logistic regression
classifiers can predict .feature file co-changes with a
relatively high AUC of 0.77, 0.74, and 0.70, respectively.

• (RQ3) What are the most significant characteristics
for predicting co-changes between .feature files and
source code files?
To identify the characteristics that are most important
to predict co-changes between .feature files and source
code files, we analyze the classification technique with
the highest AUC (i.e., our random forest technique). We
use a mean decrease AUC approach on the random forest
classifier to identify the most important characteristics to
predict co-changes between .feature file and source code
files. We observe that test files added and source LOC
deleted are the most influential characteristics.

The remainder of the paper is organized as follows. In
Section 2, we provide a motivating example to our work.
Section 3 outlines the experiment setup. Section 4 presents the
results with respect to our three research questions, and Section
5 discusses threats to the validity of our results. In Section 6,
we examine related work and Section 7 draws conclusions to
the paper.

II. MOTIVATING EXAMPLE

We study the Trivial-Graph [6] GitHub project to demon-
strate the importance of maintaining the traceability between
.feature files and source code files. Trivial-Graph is a web-
based trivia game application in which teams compete to
answer questions in multiple rounds. Trivial-Graph uses the
Cucumber BDD framework [6], [7] to write .feature files and
step definition files. The .feature files describe the scenarios
(i.e., functionalities) of the project. The step definition files are
automatically generated by Cucumber based on the .feature

.feature file code:

@players
Feature: Trivialt Players and Teams
Scenario: Register as a new player
When you register "Tobias" with handle

"@thobe"
Then trivialt knows "@thobe" is "Tobias"
And "@thobe" should be the current player

Step definition file code:

@players
@When("ˆyou register \"([ˆ\"]*)\" with

handle \"([ˆ\"]*)\"$")
public void youRegisterUser(String name,

String handle){
currentPlayer =

trivialtWorld.register(handle, name);
assertThat(currentPlayer,

is(not(nullValue())));
}
@Then("ˆtrivialt knows \"([ˆ\"]*)\" is

\"([ˆ\"]*)\"$")
public void trivialtKnowsPlayer(String

handle, String name){
Player foundPlayer =

trivialtWorld.findPlayer(handle);
assertThat(foundPlayer,

is(not(nullValue())));
assertThat(foundPlayer.getName(),

is(name));
}
@Then("ˆ\"([ˆ\"]*)\" should be the current

player$")
public void assertTheCurrentPlayerIs(String

handle){
assertThat(currentPlayer.getHandle(),

is(handle));
}

Fig. 1: Code example from BDD files

files. The step definition files define the tests for the func-
tionalities specified in the .feature files. Figure 1 shows an
example of a .feature file and its corresponding step definition
file. A step definition file has annotations (e.g., “@When” and
“@Then”) to indicate which step of a .feature file is tested
by a given test method. The developer then runs the tests on
the source code using the step definition files, until every tests
passes, satisfying the functions of each scenario

We observe co-changes between .feature files and source
code files in the Trivial-Graph by studying six commits
in a one month time frame during 2011 (shown in Figure
2). Figure 2 shows an out-of-sync co-change in the dotted
lines surrounding commits 4 and 5. In commit 1, the au-
thor creates the project. A week later, the author adds the
app.feature file in commit 2 as well as the corresponding
source code files. Similarly, in commit 3, the author adds
the team players.feature file and the corresponding source
code files (i.e., Add Teams.java and Players.java). The author
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Fig. 2: Time line of an example BDD project

then follows the requirements described by app.feature and
team players.feature to add LOC in App.java and Players.java
in commit 4. However, in commit 4, the author does not
modify .feature files to describe the newly added source code
functionalities. Roughly two hours later, in commit 5, the
author adds LOC to app.feature and team players.feature and
writes the following commit message “Added missing steps”.
In each of these commits, we observe co-changing .feature
files and source code files (i.e., app.feature co-changing with
App.java, and team players.feature co-changing with Play-
ers.java). However, the co-changing files are not modified
simultaneously. We identify .feature file co-changes across
different commits, i.e., source code files in commit 4 co-
changing with .feature files in commit 5. We observe that,
although app.feature and AppTest.java are co-changing files,
the author does not include app.feature changes in commit
4, showing a temporary out-of-sync co-change. As a result of
this out-of-sync co-change, the author needs to make another
commit roughly two hours after commit 4. After step 6, we
observe that app.feature is modified with AppTest.java in the
same commit frequently, showing a continuing co-change link
between the two files.

As the project scales up, it becomes harder to understand
which .feature file corresponds with which source file or

methods, and out-of-sync co-changes become more prevalent.
In commit 5 of Figure 2, we observe that team players.feature
correspond to three different source files, and the .feature file
is still modified 18 days after its first co-changing source file
was added. As the project grows larger, the .feature file will
need to be modified to describe functionalities of other source
files, causing the .feature file maintenance time even longer.
For a developer joining such a project, it is time-consuming
and challenging to identify every co-change between .feature
files and source code files. We explore approaches that can
ease the traceability of co-changes between .feature files and
source code files and reduce the out-of-sync co-changes.

III. EXPERIMENT SETUP

In this section, we explain how we collect the data used for
answering our research questions.

Figure 3 shows an overview of our entire experiment setup
process. In Step 1, we use the GitHub search API to find
project that mainly uses Java. We choose Java because the
BDD framework Cucumber for Java is currently the most
popular BDD tool [7]. Filtering Java projects is done by the
search API of GitHub. Using the API, we can identify the
major language of a project. GitHub uses the Linguist library
to identify the major language in each project. Our search
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Fig. 3: An overview of the experiment design

retrieves 1,005,247 projects in total and we extract 59,933
Java projects amongst all the retrieved projects. In Step 2,
we use the tree API in GitHub to find projects that include at
least one .feature file, which we deem as a BDD project. We
find that 927 out of 59,933 projects actually contain .feature
files. In Step 3, we filter out the projects that contain only
one commit manipulating a .feature file to avoid projects that
do not actually use BDD. After this filtering, 890 projects
survive. In Step 4, we eliminate BDD projects that do not
have both commit log and status data in English. Commit logs
provide information regarding every modification to the project
(e.g., why certain files are modified). The status data stores the
status of every commit, i.e., author, date and modified files.
For our research, it is important for the information to be
in English to understand the purpose of each commit and to
make our research more reproducible. Also, we perform text
processing with regards to English words in RQ1, so projects
with information in a foreign language (e.g., Arabic) would
hinder our analyses. In the end, 133 BDD projects remain.
We highlight some key characteristics of our studied projects
by selecting 50 of our 133 BDD projects with the highest
total LOC. Table 1 shows the year created, total commits,
total pull requests, total forks and total stars for each of our
studied projects.

IV. RESULTS

In this section, we provide the motivation, approach and
results for each of our research questions.

(RQ1) Can we accurately identify co-changes between .fea-
ture files and source code files?

Motivation: The traceability between .feature files and
source code becomes harder to maintain when a project scales
up. Maintaining the traceability between .feature files and
source code files is important to keep the .feature files up-to-
date. When .feature files are up-to-date in a software project,
the stakeholders can better discuss the functionalities of the
project. Additionally, up-to-date .feature files ease the learning
curve of new developers when they join the project. Therefore,
in this RQ, we investigate whether we can accurately identify
existing co-changes between .feature files and source code files
in a BDD project.

Approach: To identify co-changes between .feature files
and source files, we identify common keywords in both files.
We use the Stanford CoreNLP toolkit to categorize all words
in .feature files into word type brackets. Stanford CoreNLP
is an extensible pipeline that provides core natural language

analysis, and we use its parse function to analyze words
syntactically. The parse function is based on a probabilistic
parser [8]. We identify keywords as either nouns or verbs.
Since we intend to link .feature files with Java files, words
that are neither nouns nor verbs are eliminated and not used
for comparison (i.e., adjectives, adverbs, Gherkhin language
keywords) because words other than nouns and verbs are rarely
used in Java source code [9].

To find keywords for source code, we use a Java parser
to identify and eliminate Java language specific words (e.g.,
import, public, class). The remaining words are user specific
and kept as keywords for comparison.

We then represent each file by a String consisting of the
desired keywords, and use the cosine similarity algorithm
to observe the similarities between the Strings. The cosine
similarity converts two Strings into vectors, and calculates the
cosin(θ) between them, where θ is the angle between the
vectors. cosin(θ) is a number between 0 and 1, where 0 means
the two vectors are perpendicular (completely different), and 1
means that the two vectors are parallel (identical). We take the
upper 25% of all cosine similarities as our similarity threshold.
This threshold is cosin(θ) = 0.95, and determine that two files
are co-changing only if their cosine similarity is above 0.95.

Using the Stanford CoreNLP toolkit, Java parser, and the
cosine similarity algorithm, we observe that all .feature files
within a commit are linked to at least one source code file
in the same commit. There are also numerous cross commit
links (i.e., a .feature file and the corresponding source code
file in separate commits). When multiple commits are linked
together by the identified links, we aggregate those commits
together as work items. In some cases, commits within a work
item could be weeks, or even months apart. However, when
files are committed months apart they are likely modified for
completely unrelated tasks. Therefore, we stipulate that one
work week (or 2400 minutes) is a reasonable threshold to
determine cross-commit co-changes between .feature files and
source code files.

Findings: Our analysis yields an accuracy of 79.8%.
After the identification of all possible .feature file and source
code links, we manually examine the Git commit logs to verify
the accuracy of our method. We use a confidence level of
95% and confidence interval of 5% on all of our identified
co-changes to find a sample size for manual analysis. Our
analysis obtains 60,203 links within the same commit and
1,815 cross commit links. We determine a sample size of 451.
We analyze the commit logs and modified code for all 451
sampled links. Two of the three authors perform the manual



TABLE I: Characteristics of 50 studied BDD projects

Project (Username/Project-Name) Year Created Total commits Pull requests Forks Stars
tyen/cs320tests 2009 207 0 0 9
caspian311/Scripturelookup 2009 109 0 0 2
epabst/expressive 2009 72 0 1 3
epabst/expressiveBDD 2009 46 0 2 2
mkristian/slf4r 2009 41 0 0 6
Vaysman/jvote 2009 29 0 0 0
Serabe/javascreepy 2009 22 0 0 1
rapidftr/RapidFTR-Android 2010 1214 31 83 38
davidbkemp/nate 2010 259 0 0 0
jtigger/kanban-simulator 2010 196 0 0 4
yujunliang/lambda 2010 83 0 0 8
jacek99/maven-python-mojos 2010 73 1 12 18
rapaul/cuke4ninja 2010 70 0 0 1
trevershick/jook 2010 69 2 2 1
sveinung/pritest-server 2010 57 1 0 6
openengsb-labs/labs-yaste 2010 32 0 1 3
runeflobakk/poker 2010 27 0 1 1
bugsnag/bugsnag-android 2011 645 29 154 872
AndreasWilhelm/neo4j-spatial 2011 360 0 0 2
resthub/springmvc-router 2011 214 29 59 170
rlogiacco/SmartUnit 2011 178 5 5 15
vitormcruz/payroll cs 2011 173 0 0 2
mkristian/rails-resty-gwt 2011 164 0 2 12
akollegger/trivial-graph 2011 85 0 0 1
jfinkhaeuser/androdyne 2011 64 0 0 5
Drin/spam 2011 50 0 1 1
dokipen/embedly-java 2011 39 1 9 1
jescov/jescov 2011 39 0 4 10
jkransen/treemarks 2011 38 0 0 0
Jennifer-fu/practices 2011 36 0 0 1
lukasz-kaniowski/cucumber-selenium-rc 2011 33 0 1 2
ZsoltFabok/cucumber-jvm-post 2011 22 0 10 17
Chorus-bdd/Chorus 2012 1124 17 9 35
bartbaas/spatial 2012 565 0 0 2
daniel-andersen/Q-Cumberless-Testing 2012 348 0 0 4
leviwilson/oasis-android 2012 244 0 0 1
tlauchenauer/gaia-pdb 2012 237 0 0 1
bclozel/springmvc-router 2012 214 2 7 42
rabid-fish/JavaTechExamples 2012 178 0 0 1
iantmoore/old-substeps-webdriver 2012 163 0 1 1
ericlemerdy/one-kata-per-day 2012 118 0 3 7
mikael-wilhelm/LoadPlannerAmaz 2012 109 0 0 1
marky-mark/MTT 2012 77 0 0 1
leefaus/soa-petstore 2012 56 0 4 4
suggitpe/java-web 2012 40 0 1 0
japonophile/jescov 2012 39 0 0 1
sandromancuso/tww-java 2012 33 0 0 2
ilanpillemer/gherkin-eclipse-plugin 2012 26 0 2 18
talios/cucumber-testng-factory 2012 26 3 9 13
hayatoshimizuBSKYB/apollo 2012 23 3 1 5



analysis independently to verify the accuracy of our method.
When merging the manual analyses performed by each author,
we obtained a first consensus of 82% of 100 samples. For
the remaining 18%, the authors discussed together in order to
reach further consensus.

We determine that a .feature file co-change is present if
the commit logs or modified code describe how .feature
files and source code files are written together. Links
including identical .feature file and source code file names
also validate our analysis (i.e., our motivating example has
teamPlayer.feature and teamPlayer.java within the same link).
Of 451 cross commit work items across 133 BDD projects,
we conclude that 360 work items are actually linked together,
and the rest are unable to be fully identified. This yields an
accuracy of 79.8%. The commit links that we are unable to
fully identify as .feature and source code links contain some
shared keywords between commits. After manually inspecting
the commit logs and modified code, however, we conclude
that these commits may address different functionalities
within the project. The 79.8% accuracy is a lower bound
for our approach because commit logs and modified code
do not always explain the functionality of a commit accurately.

Our analysis obtains 60,203 links within the same commit
and 1,815 cross commit links. After manual analysis, we
observe that we can identify co-changes between .feature
files and source code files with an accuracy of 79.8%.

(RQ2) Can we accurately predict when co-changes between
.feature files and source code files are necessary?

Motivation: It would be beneficial for developers to de-
termine the necessity of co-changes between .feature files
and source code files before committing source code files.
We aim to predict the modification of .feature files within
the same commit. If we find that code characteristics can
accurately predict BDD co-changes, we can warn developers
that they should probably change or create a .feature file before
committing the code.

Approach: Both language agnostic and Java specific char-
acteristics are used as independent variables in predicting
whether a new commit should include a .feature file co-change
(i.e., a BDD co-change). We call these independent variables
predictors. We approach the prediction of BDD co-changes
as a binary classification problem. If a work item (as defined
in RQ2) has both .feature files and .java files, our response
class is true. Otherwise, our response class is false. We use
three classification techniques: random forest, Naive Bayes,
and logistic regression.

To ensure low correlation between the predictors, we per-
form a correlation test on our predictors. It is harder to
assess the importance of a specific predictor if it is corre-
lated with other predictors. Since all predictors are numeric,
we use the Pearson correlation coefficient to evaluate the
correlation between predictors. We use a squared Pearson
product moment correlation coefficient (SPPMCC) threshold
of r2 = 0.7. SPPMCC is the squared Pearson correlation
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Fig. 4: Hierarchical clustering of predictors

coefficient (SPCC) when applied to a sample. SPCC is defined
as ρ2(a, b) = E2(a,b)

σaσb
, where a and b are two zero-mean real-

valued random variables, and E(ab) is the cross-correlation
between a and b, and σa and σb are the variances of the
variables a and b, respectively. One of the most important
properties of the SPCC is that 0 ≤ ρ2(a, b) ≤ 1. If
ρ2(a, b) = 0, then a and b are completely uncorrelated. The
closer the value of ρ2(a, b) is to 1, the stronger the correlation
between the two variables [10]. Based on prior research [5],
we compute 24 predictors that can potentially predict BDD
co-changes. Table 2 describes each predictor in detail and
provides a rationale for the potential to predict BDD co-
changes. Figure 4 shows the Pearson correlation coefficient for
all predictors. The horizontal line shows the PPMCC threshold
(0.7) from which the variables are highly correlated with each
other. We can see that files deleted and other LOC deleted
are highly correlated with each other. Interestingly, we also
observe that source files modified and test files modified yield
a SPPMCC of r2 = 0.75 in BDD projects, showing a high
degree of correlation between these two predictors. We also
eliminate predictors that we intuitively know as directly related



TABLE II: Taxonomy of the studied co-change predictors

Attribute Name Type Definition Rationale
Source file added Numeric Number of source files added in

a commit
Changing a source file may add new functionalities,
which requires new .feature file scenarios

Test file added Numeric Number of test files added in a
commit

Developers often add test files and .feature files
together to test new functionalities

Other file added Numeric Number of other files added in
a commit

All other files changed could also add new func-
tionalities, which requires new .feature file scenar-
ios

Source file modified Numeric Number of source files modified
in a commit

Same as source file added

Test file modified Numeric Number of test files modified in
a commit

Same as test file added

Other file modified Numeric Number of other files modified
in a commit

Same as other file added

Source file deleted Numeric Number of source files deleted
in a commit

Deleted functionalities might require deletion of
the scenarios in .feature files that describe the
deleted functionalities

Test file deleted Numeric Number of test files deleted in
a commit

Deleted tests might require deletion of the scenar-
ios in .feature files corresponding with the deleted
tests

Other file deleted Numeric Number of other files deleted in
a commit

All other files deleted might cause deletion of
scenarios, which requires .feature file changes

Source file renamed Numeric Number of source files renamed
in a commit

Renaming source files might require renaming .fea-
ture files

Test file renamed Numeric Number of test files renamed in
a commit

Renaming test files might require renaming .feature
files

Other file renamed Numeric Number of other files renamed
in a commit

Renaming all other files might require renaming
.feature files

Source LOC added Numeric Source LOC added in a commit A large LOC change may signify changes in func-
tionalities, which requires changes in .feature file
scenarios

Test LOC added Numeric Test LOC added in a commit Same as source LOC added
Other LOC added Numeric Other LOC added in a commit Same as source LOC added
Added dependencies Numeric LOC including “import” in a

commit
New dependencies introduced could mean addi-
tions of new functionalities, which requires .feature
file changes

Author experience Numeric Number of commits the au-
thor has written prior to current
commit

High author experience could signify more com-
fortability with using .feature files, causing more
.feature file changes

methods added Numeric Number of methods added in a
commit

Methods may add or change functionalities, which
requires new .feature file scenarios

methods deleted Numeric Number of methods deleted in
a commit

Deleting methods might delete functionalities,
which requires accompanying deletion of .feature
scenarios



to .feature files, such as step definition file changes. Since
step definition files are automatically generated based on their
respective .feature files, the link between step definition files
and .feature files are obvious. Hence, to assess the explanatory
power of less obvious predictors, we remove the changes in
step definition files from our predictors.

We eliminate other LOC deleted, test files modified, and all
step definition changes for the classification process, and are
left with 19 total predictors.

We use the random forest, Naive Bayes and logistic re-
gression algorithms due to our dichotomous response class
(Presence or absence of .feature file modification in a commit).
We also choose these three techniques because they are widely
used in previous research that used classification models in
software engineering [5], [11], [12], [13].

To evaluate the performance of our predictions, we construct
classifiers using a testing corpus and compare its deduction
against the training corpus. We use tenfold cross-validation
to obtain the testing corpus, which splits the data into ten
equal parts, and takes one part at random as the testing corpus
while the other nine as the training corpus. The process is
repeated ten times, using a different part as the training corpus
each time. We use the Area Under the Curve (AUC) metric to
evaluate the performance of our three models. AUC is the area
under the plot of true positive rate against false positive rate.
AUC is a number between 0 and 1 [12]. A higher AUC value
means that our predictors have high discriminatory power (i.e.,
it better distinguishes whether a .feature file change or creation
is needed or not).

Findings: Our random forest model obtains an AUC
of 0.77. Our naive Bayes and Logistic Regression models
obtain AUC values of 0.74 and 0.70, respectfully. We
observe that both language agnostic and language specific
predictors can potentially predict .feature file co-changes.
This result can be helpful for BDD developers. For example,
code-change predictors can warn them of the necessity to
modify or create .feature files before committing the changes,
so they can keep the .feature file and source code file links
up-to-date. Once our model predicts that a commit needs to
change a .feature file, our NLP technique presented in RQ1
could be used to show suggestions for developers.

Our best performing classification technique (random forest
model) obtains an AUC of 0.77, which can help BDD
developers maintain traceability more efficiently.

(RQ3) What are the most significant code change charac-
teristics for predicting co-changes between .feature files and
source code files?

Motivation: In RQ1, we determine that we can detect
BDD co-changes with relatively high accuracy. In RQ2, we
observe that code-change characteristics, independent of each
other, can predict those co-changes. To further study BDD
traceability, we highlight the code change predictors with the
highest importance for co-changes between .feature files and
source code files. Knowing the most important predictors of

co-changes between .feature files and source code files can
further help developers to understand why .feature files should
be modified before committing source code file.

Approach: To analyze the predictors with the highest ex-
planatory power, we use our random forest model because it
obtains the highest AUC value (AUC of 0.77). We compute the
mean decrease accuracy with respect to the model’s AUC of
each predictor to evaluate their importance. This computation
is performed as follows. We first obtain the AUC of our
random forest classification algorithm without a particular pre-
dictor and observe the decrease in AUC due to the elimination
of that predictor. A large AUC decrease, after eliminating a
predictor, indicates a higher predictive power associated with
that predictor. We perform the same steps for all predictors to
assess their predictive power in terms of AUC.

Findings: Test files added, other files modified, test files
re-named, and source LOC deleted are the most important
predictors for co-changes between .feature files and source
code files. We observe from Figure 5 that eliminating test
files added, other files modified, test files renamed, and source
LOC deleted yield AUC decreases of 0.17, 0.11, 0.09 and
0.08, respectively. We can use these findings to recommend
changing a .feature file when adding or renaming a test file,
modifying non-Java files, and deleting LOC from Java source
files. By considering .feature file changes before committing
source file changes, we can potentially help developers save
.feature file maintenance time. Furthermore, a new developer
can identify .feature file co-change links by observing the
presence of these predictors in previous commits.

Our results suggest that developers should consider mod-
ifying or adding .feature files in cases of test files added,
other files modified, test files re-named and source LOC
deleted.

V. THREATS TO VALIDITY

In this section, we discuss threats to the validity of our case
studies.

A. Construct validity.

Construct threats to validity are errors caused by the
methodology used in collecting data. For RQ2, we make
an assumption that one work week is the maximum time
for co-changes between .feature files and source code files
across different commits to occur. Changing the time-window
might have produced more identified co-changes, but a longer
time window would mean a higher risk of linking unrelated
changes. Moreover, it is not unlikely that commits performed
within a work week regarding the same functionalities are still
related. Therefore, one work week seemed a safe assump-
tion. We use Git logs for the manual analysis performed in
RQ2 (i.e., to find the accuracy of our identifying co-changes
method), which may contain bias. We combat this bias by
analyzing LOC changes when a Git log does not describe a
commit adequately.
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Fig. 5: Explanatory power of co-change predictors by mean
decrease accuracy (% decrease)

B. Internal validity.
Internal threats are concerned with the relationships between

our dependent variable (.feature file co-changes) and inde-
pendent variables (code characteristics). We select predictors
that cover a wide range of characteristics that would likely
cause .feature file changes. However, our selection is not
exhaustive and some predictors that we have overlooked may
have improved the performance of classifiers. For example, the
amount of project stakeholders involved in a functionality or
the amount of concurrent tasks the developers were performing
during a commit (i.e., causing the developers to have less time
to implement .feature files) may have impacted the results
of our classifiers. However, GitHub does not record commit
information in such detail.

C. External validity.
External threats are concerned with the extent to which we

can generalize our results. We only use 133 BDD projects in
our analysis. We reached 133 as the number of projects to
analyze to avoid noise in the dataset by including toy projects
or inactive projects. further studies should investigate more
projects to avoid any sample bias. preferably we would use
large industry projects.

VI. RELATED WORK

In this section, we discuss the related work with respect to
prior work focusing on BDD, testing strategies, co-changes,
traceability and requirements engineering.

A. BDD
Carvalho et al. [14], [15] found that BDD is a specification

technique that automatically certifies that all functional re-
quirements are treated properly by source code. Solis et al. [1]

concluded that there are main characteristics of BDD, such as
ubiquitous language, and the iterative decomposition process,
in which developers repeatedly test a set of features satisfying
customer priorities. The other characteristics of BDD include
plain text description, automated acceptance testing, and read-
able behavior oriented specification code. Soeken et al. [16]
proposed an assisted flow for BDD using natural language
processing. Our work differs from the existing BDD work as
it focuses on the co-changing .feature files and source code
files.

B. Testing Strategies
Basili et al. [17] compared three different types of testing

strategies: code reading, functional testing, and structural
testing. Bhat et al. [3] evaluated the efficiency of Test Driven
Development (TDD), and observed that a significant increase
(greater than two times) in quality of code occurs due to the
usage of TDD. Differently from prior work, our paper explores
the traceability problem in BDD practices.

C. Co-changes
With regards to co-changes, Zaidman et al. [4] used file

change history view, in which production and test files added,
changed and deleted are recorded and examined. This work
also examines LOC growth view to study two large repos-
itories. Beyer and Hassan visualized software history by
displaying sequences of cluster layouts based upon co-change
graphs [18]. To identify co-changing lines, Zimmermann et al.
[19] built an annotation graph based upon the identification
of lines across several versions of a file. Kagdi et al. [20]
applied sequential pattern mining to file commits in software
repositories to discover traceability links between software
artifacts. Mcintosh et al. [5] mined two large scale software
repositories, and used code change characteristic to explain
build system and source code co-changes. With regards to co-
change based recommendations systems, Robillard et al. [21]
described recommendation systems in assessing and improving
evolving software. Robillard et al. found that quantity, hetero-
geneity, context-sensitivity, dynamicity, and partial generation
made it difficult to analyze and assess software engineering
data. D’Ambros et al. [22] attempted to link co-changing
software artifacts to software defects, and found that there
was a correlation between change coupling and defects. Unlike
previous work on co-changes, our study identifies and predicts
co-changes to increase the efficiency of BDD developers
regarding keeping the .feature files up-to-date.

D. Traceability
Sundaram et al. [23] presented the importance of generating

traceability links and discussed two different ways to enhance
traceability in software engineering: vocabulary base and sec-
ondary measures. Sundaram et al. found that high and low
level vocabulary artifacts did not perform as well as only using
low level artifacts. Gotel and Finkelstein [24] investigated
the challenges of the requirements traceability problem by
empirically studying code by over 100 practitioners. Gotel and



Finkelstein recommended the increase of awareness, recording
and organizing of information to improve traceability. Our
work focuses on the traceability problem for BDD .feature
files by leveraging information found in GitHub repositories.

E. Requirements Engineering

Cheng et al. [25] found that requirements engineering is dif-
ficult because requirements analysts start with ill-defined spec-
ifications and cannot predict how the system’s environment
behaves. Cheng et al. recommended that researcher should
work with practitioners, requirements engineering researchers
should work with other software engineering researchers,
and industrial organizations should provide industrial-strength
project data to researchers [25]. Paetsch et al. [26] presented
the characteristics of requirements engineering and agile de-
velopment. Paetsch et al. recommended interviews and Joint
Application Development (JAD) sessions with customers to
incorporate requirements engineering with agile development.
To improve links between source code and requirements,
Rahimi et al. [27] presented TLE (Trace Link Evolver) to
automate the trace links as changes are introduced to source
code. Rahimi et al. applied their method across 27 releases
of the Cassandra Database System. They found a recall of
0.945 and a precision of 0.919 [27]. Our work focused on
.feature files as requirement files in BDD. We analyzed GitHub
commits containing both .feature files and source code files.
Our work used NLP techniques to identify trace links between
.feature files and source code in BDD projects, and used
classification techniques to predict those trace links.

VII. CONCLUSIONS

BDD is a relatively new testing strategy that uses English-
like syntax in describing code functionalities. BDD makes it
easier for all stakeholders involved in a project to understand
the functionalities of a software project. With the use of
.feature files in describing the functionalities of a software, the
co-evolution of .feature files and source code files must be kept
up-to-date. In our work, we detect the co-changes between
.feature files and source code files, and find characteristics
that can accurately predict the co-changes in order to improve
the traceability between .feature files and source code files.

Our approach can link .feature files with source code files
with an accuracy of 79% and predict co-changes between
.feature files and source code files with an AUC of 0.77. Test
files added, other files modified, test files renamed, and source
LOC deleted are the best predictors for co-changes between
.feature files and source code files. Our results demonstrate
that co-changes between .feature files and source code files
can be detected, and that source code change characteristics
can predict those co-changes. Our findings can help developers
to keep software documentation (i.e., .feature files) up-to-date
and help projects to adopt the BDD practices in developing
software more efficiently. To further assist BDD developers,
we plan to explore BDD co-changes with regards to more
languages and analyze more projects using BDD.
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